Reputation: 121
I have a data frame with numerical and string columns.
import numpy as np
import pandas as pd
from scipy.stats import zscore
data = {'c1' : [1., 2., 3., 4.], 'c2' : [4., 3., 2., 1.], 'c3' : [5., 6., 7000., 8.],
'c4' : [8., 7., 6., 10000.], 'c5' : ['a', 'b', 'c', 'd']}
I want to replace the outliers in numerical columns with NaN.
c1 c2 c3 c4 c5
0 1.0 4.0 5.0 8.0 a
1 2.0 3.0 6.0 7.0 b
2 3.0 2.0 NaN 6.0 c
3 4.0 1.0 8.0 NaN d
This code does what I want to do.
df = pd.DataFrame(data)
allcol = list(df)
numcol = [x for x in allcol if x not in ('c5')]
df[numcol] = df[numcol].mask(~df[numcol].apply(lambda x: zscore(x) < 1.5, axis=1))
Wondering if you know any better and simpler solution...
Upvotes: 1
Views: 1915
Reputation: 153460
You could set 'c5' into the index and then use:
df1 = df.set_index('c5')
df1.where(df1.apply(zscore).lt(1.5)).reset_index().reindex_axis(df.columns,1)
Output:
c1 c2 c3 c4 c5
0 1.0 4.0 5.0 8.0 a
1 2.0 3.0 6.0 7.0 b
2 3.0 2.0 NaN 6.0 c
3 4.0 1.0 8.0 NaN d
Upvotes: 2