Reputation: 803
I want to calculate a cumulative average only if the value is >0. If I have a vector:
v <- c(1, 3, 0, 3, 2, 0)
The average would be 9/6 = 1.5, however I only want to take an average when the value is >0, so in this case it would be 9/4 = 2.25. But that average is over the entire set. I want to do this averaging as the data set builds and accumulates. So, initially it would be:
1+3/2, 1+3+0/2, 1+3+0+3/3, 1+3+0+3+2/4, 1+3+0+3+2+0/4
My data set is 9,000 rows and its growing. I can get cumsum
to work and calculate the cumulative sum, but not the cumulative average for a "success".
Upvotes: 3
Views: 1161
Reputation: 6542
dplyr
package have a cummean
function. If you want only for > 0, select value in v for v>0
:
v <- c(1, 3, 0, 3, 2, 0)
dplyr::cummean(v[v>0])
#> [1] 1.000000 2.000000 2.333333 2.250000
if you want the results with repetition, you could play with index and a helper function from zoo.
# Create a vector container for the result (here with NA values)
v_res <- v[NA]
# Fill cumsum where you want to calculate it (here v>0)
v_res[v>0] <- dplyr::cummean(v[v>0])
# Fill the gap with previous value
zoo::na.locf(v_res)
#> [1] 1.000000 2.000000 2.000000 2.333333 2.250000 2.250000
it works with negative value in v too
v <- c(1, 3, 0, 3, -5, 2, 0, -6)
v_res <- v[NA]
v_res[v>0] <- dplyr::cummean(v[v>0])
zoo::na.locf(v_res)
#> [1] 1.000000 2.000000 2.000000 2.333333 2.333333 2.250000 2.250000 2.250000
You could use tidyverse
too. This solution could be useful if your
data is in a data.frame.
library(dplyr, warn.conflicts = F)
library(tidyr)
data <- data_frame(v = c(1, 3, 0, 3, 2, 0)) %>%
tibble::rowid_to_column()
res <- data %>%
filter(v > 0) %>%
mutate(cummean = cummean(v)) %>%
right_join(data, by = c("rowid", "v")) %>%
fill(cummean)
res
#> # A tibble: 6 x 3
#> rowid v cummean
#> <int> <dbl> <dbl>
#> 1 1 1 1.000000
#> 2 2 3 2.000000
#> 3 3 0 2.000000
#> 4 4 3 2.333333
#> 5 5 2 2.250000
#> 6 6 0 2.250000
pull(res, cummean)[-1]
#> [1] 2.000000 2.000000 2.333333 2.250000 2.250000
Upvotes: 1
Reputation: 83235
You can solve this by dividing the cumulative sum of v
with the cumulative sum of the logical vector v > 0
:
v1 <- cumsum(v)/cumsum(v>0)
which gives:
> v1 [1] 1.000000 2.000000 2.000000 2.333333 2.250000 2.250000
When you want to omit the first value:
v2 <- (cumsum(v)/cumsum(v>0))[-1]
which gives:
> v2 [1] 2.000000 2.000000 2.333333 2.250000 2.250000
The latter is equal to the desired outcome as specified in the question:
> ref <- c((1+3)/2, (1+3+0)/2, (1+3+0+3)/3, (1+3+0+3+2)/4, (1+3+0+3+2+0)/4)
> identical(v2, ref)
[1] TRUE
An implementation in a dataset:
# create an example dataset
df <- data.frame(rn = letters[seq_along(v)], v)
# calculate the 'succes-cummulative-mean'
library(dplyr)
df %>%
mutate(succes_cum_mean = cumsum(v)/cumsum(v>0))
which gives:
rn v succes_cum_mean 1 a 1 1.000000 2 b 3 2.000000 3 c 0 2.000000 4 d 3 2.333333 5 e 2 2.250000 6 f 0 2.250000
Upvotes: 6