Reputation: 472
I have a symmetric matrix of probabilities with diagonal entries null. Suppose something like
0 0.5 0.1 0.6
0.5 0 0.2 0.1
0.1 0.2 0 0.2
0.6 0.1 0.2 0
I want to draw a dummy matrix so that the probability of the entry [i,j] be the entry [i,j] in the probabilities matrix. Note that the probabilities matrix I have is an Armadillo matrix (a big matrix 5000x5000). of course, the diagonal dummies should be null because their probabilities are null. I built two functions to do that but they are not fast. I should sample this matrix many times in loops.
mat binom1(mat& prob){
int n=prob.n_rows;
mat sample(n,n,fill::zeros);
NumericVector temp(2);
for(int i(0);i<n-1;++i){
for(int j(i+1);j<n;++j){
temp=rbinom(2,1,prob(i,j));
sample(i,j)=temp(0); sample(j,i)=temp(1);
}
}
return sample;
}
mat binom2(mat& prob){
int n=prob.n_rows;
mat sample(n,n);
for(int i(0);i<n;++i){
for(int j(0);j<n;++j){
sample(i,j)=as<double>(rbinom(1,1,prob(i,j)));
}
}
return sample;
}
The both are slower than vectorized rbinom in R.
z=matrix(runif(1000^2),1000) #just an example for 1000x1000 matrix
microbenchmark(rbinom(nrow(z)^2,1,z),binom1(z),binom2(z))
Results
expr min lq mean median uq max
rbinom(nrow(z)^2, 1, z) 95.43756 95.94606 98.29283 97.5273 100.3040 108.2293
binom1(z) 131.33937 133.25487 139.75683 136.4530 139.5511 229.0484
binom2(z) 168.38226 172.60000 177.95935 175.6447 180.9531 277.3501
Is there a way to make the code faster ?
I see one example here. But in my case the probabilities are in Armadillo matrix
Upvotes: 2
Views: 372
Reputation: 472
Thank you so much. I also used this
umat binom4(mat& prob){
int n=prob.n_rows;
mat temp(n,n,fill::randu);
return (temp<prob);
}
I think it is a bit more faster
microbenchmark(rbinom(nrow(z)^2,1,z),binom1(z),binom2(z),binom3(z),binom4(z))
expr min lq mean median uq max neval
rbinom(nrow(z)^2, 1, z) 94.24809 95.29728 97.24977 95.86829 98.19758 108.30877 100
binom1(z) 130.20266 132.48951 138.07100 134.03693 137.34613 297.86393 100
binom2(z) 164.96716 168.17024 175.89784 170.29310 173.93890 338.99306 100
binom3(z) 64.57977 64.78340 67.03158 65.81533 67.42386 92.31300 100
binom4(z) 29.66925 31.44107 32.81296 31.77392 33.31575 55.65539 100
Upvotes: 1
Reputation: 11728
Given the nearly-duplicate answer, you can use:
mat binom3(const mat& prob) {
int n = prob.n_rows;
mat sample(n, n);
std::transform(prob.begin(), prob.end(), sample.begin(),
[=](double p){ return R::rbinom(1, p); });
return sample;
}
Microbenchmark:
Unit: milliseconds
expr min lq mean median uq max neval
rbinom(length(z), 1, z) 46.88264 47.28971 48.09543 47.66346 48.40734 65.29790 100
binom1(z) 76.98416 82.60813 84.93669 83.51432 84.04780 126.46992 100
binom2(z) 96.20707 98.59145 101.99215 99.56175 102.02750 153.04754 100
binom3(z) 34.01417 34.49066 35.12199 34.93946 35.47979 38.22539 100
Upvotes: 1