Reputation: 463
I have a dataframe of 6 variables. For each column, data is same for the same group with some missing values. I want to fill these missing values by duplicating value of the same group for each variable. In case all values are missing for a particular group, it should fill value of above group. So, I want the result as df_complete.
Here is what I have tried but it fails when first observation of any group is missing. Unable to figure out what is wrong in it.
set.seed(123)
df <- data.frame(matrix(rnorm(100), ncol = 5))
df$Group <- letters[1:20]
df <- df[rep(seq_len(nrow(df)), sample(1:10, 20, replace = T)),]
df_complete <- df
df$X1[sample(1:nrow(df), 15)] <- NA
df$X2[sample(1:nrow(df), 10)] <- NA
df$X3[sample(1:nrow(df), 25)] <- NA
df$X4[sample(1:nrow(df), 10)] <- NA
df$X5[sample(1:nrow(df), 15)] <- NA
lvcf <- function(x)
{
miss_ind <- which(is.na(x))
if(length(miss_ind) != 0)
{
if(miss_ind[1]==1)
{
ind1 <- which(!is.na(x))[1]
x[1] <- x[ind1]
miss_ind <- which(is.na(x))
}
for(i in 1:length(miss_ind))
{
x[miss_ind[i]] <- x[miss_ind[i]-1]
}
}
return(x)
}
df_complete <- df %>%
group_by(Group) %>%
sapply(lvcf)
Upvotes: 0
Views: 2099
Reputation: 76651
Package zoo
has a function to handle that kind of problem, na.locf
, for last observation carried forward
.
library(zoo)
df_complete <- df %>%
group_by(Group) %>%
na.locf(., na.rm = FALSE)
head(df_complete)
## A tibble: 6 x 6
## Groups: Group [2]
# X1 X2 X3 X4 X5 Group
# <chr> <chr> <chr> <chr> <chr> <chr>
#1 -0.56047565 -1.06782371 -0.69470698 <NA> 0.005764186 a
#2 -0.56047565 -1.06782371 -0.69470698 0.37963948 0.005764186 a
#3 -0.56047565 -1.06782371 -0.69470698 0.37963948 0.005764186 a
#4 -0.23017749 -0.21797491 -0.20791728 -0.50232345 0.385280401 b
#5 -0.23017749 -0.21797491 -0.20791728 -0.50232345 0.385280401 b
#6 -0.23017749 -0.21797491 -0.20791728 -0.50232345 0.385280401 b
Note the <NA>
in column X4
.
EDIT.
Following the OP's comment below and G. Grothendieck's answer, the following removes all NA
values. Just use a second na.locf
with argument fromLast = TRUE
.
df_complete <- df %>%
group_by(Group) %>%
na.locf(., na.rm = FALSE) %>%
na.locf(., fromLast = TRUE)
head(df_complete)
## A tibble: 6 x 6
## Groups: Group [2]
# X1 X2 X3 X4 X5 Group
# <chr> <chr> <chr> <chr> <chr> <chr>
#1 -0.56047565 -1.06782371 -0.69470698 0.37963948 0.005764186 a
#2 -0.56047565 -1.06782371 -0.69470698 0.37963948 0.005764186 a
#3 -0.56047565 -1.06782371 -0.69470698 0.37963948 0.005764186 a
#4 -0.23017749 -0.21797491 -0.20791728 -0.50232345 0.385280401 b
#5 -0.23017749 -0.21797491 -0.20791728 -0.50232345 0.385280401 b
#6 -0.23017749 -0.21797491 -0.20791728 -0.50232345 0.385280401 b
EDIT 2
Following the bug found out by the OP, here's a solution using base R
only. I will make a new df with NA
values starting each group but the first, i.e., group a
.
set.seed(123)
df2 <- data.frame(X1 = rnorm(20),
X2 = rnorm(20),
Group = rep(letters[1:4], each = 5))
df2[c(6, 11, 16), 1:2] <- NA
df2_complete <- lapply(split(df2, df2$Group), function(x){
k <- which(names(x) == "Group")
x[-k] <- sapply(x[-k], na.locf, na.rm = FALSE)
x[-k] <- sapply(x[-k], na.locf, fromLast = TRUE)
x
})
df2_complete <- do.call(rbind, df2_complete)
row.names(df2_complete) <- NULL
df2_complete
Upvotes: 2