T.Poe
T.Poe

Reputation: 2079

How to predict values with a trained Tensorflow model

I've trained my NN in Tensorflow and saved the model like this:

def neural_net(x):
   layer_1 = tf.layers.dense(inputs=x, units=195, activation=tf.nn.sigmoid)
   out_layer = tf.layers.dense(inputs=layer_1, units=6)
   return out_layer

train_x = pd.read_csv("data_x.csv", sep=" ")
train_y = pd.read_csv("data_y.csv", sep=" ")
train_x = train_x / 6 - 0.5

train_size = 0.9
train_cnt = int(floor(train_x.shape[0] * train_size))
x_train = train_x.iloc[0:train_cnt].values
y_train = train_y.iloc[0:train_cnt].values
x_test = train_x.iloc[train_cnt:].values
y_test = train_y.iloc[train_cnt:].values

x = tf.placeholder("float", [None, 386])
y = tf.placeholder("float", [None, 6])

nn_output = neural_net(x)

cost = tf.reduce_mean(tf.losses.mean_squared_error(labels=y, predictions=nn_output))
optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(cost)

training_epochs = 5000
display_step = 1000
batch_size = 30

keep_prob = tf.placeholder("float")

saver = tf.train.Saver()
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for epoch in range(training_epochs):
        total_batch = int(len(x_train) / batch_size)
        x_batches = np.array_split(x_train, total_batch)
        y_batches = np.array_split(y_train, total_batch)
        for i in range(total_batch):
            batch_x, batch_y = x_batches[i], y_batches[i]
            _, c = sess.run([optimizer, cost], 
                            feed_dict={
                                x: batch_x, 
                                y: batch_y, 
                                keep_prob: 0.8
                            })
    saver.save(sess, 'trained_model', global_step=1000)

Now I want to use the trained model in a different file. Of course there are many many examples of restoring and saving the model, I went through lots of them. Still I couldn't make any of them work, there is always some kind of error. So this is my restore file, could you please help me to make it restore the saved model?

saver = tf.train.import_meta_graph('trained_model-1000.meta')
y_pred = []
with tf.Session() as sess:
    saver.restore(sess, tf.train.latest_checkpoint('./'))
    sess.run([y_pred], feed_dict={x: input_values})

E.g. this attempt gave me the error "The session graph is empty. Add operations to the graph before calling run()." So what operation should I add to the graph and how? I don't know what that operation should be in my model... I don't understand this whole concept of saving/restoring in Tensorflow. Or should I do the restoring completely differently? Thanks in advance!

Upvotes: 13

Views: 28982

Answers (4)

zardosht
zardosht

Reputation: 3571

This question is old. But if someone else is struggling with doing predictions with a trained model (with TF 1.x) this code might help.

Pay attention that

  1. Your network construction/defining code must be executed before the Saver() instance is created. Otherwise you get the error: ValueError: No variables to save. In the code below the LeNet(x) method constructs the network for input placeholder x.

  2. You should not initialize the variables in the session. Because obviously you are loading them from the saved model.


# all the network construction code
# (e.g. defining the variables and layers)
# must be exectured before the creation of 
# the Saver() object. Otherwise you get the 
# error: ValueError: No variables to save. 

logits = LeNet(x)
saver = tf.train.Saver()

index = random.randint(0, len(X_train))
image = X_train[index].squeeze()
label = y_train[index]
print("Label: ", label)

plt.figure(figsize=(1,1))
plt.imshow(image, cmap="gray")
plt.show()

with tf.Session() as sess:
    saver.restore(sess, tf.train.latest_checkpoint('./checkpoints/'))
    logits_output = sess.run(logits, feed_dict={x: image.reshape((1, 32, 32, 1))}) 
    logits_output = logits_output.squeeze()
    pred_output = np.exp(logits_output)/sum(np.exp(logits_output)) #softmax
    print("Logits: ", logits_output)
    print("Prediction output:", pred_output)
    print("Predicted Label: ", np.argmax(pred_output))

Upvotes: 0

Ismaïla
Ismaïla

Reputation: 1

You can know use tf.saved_model.builder.SavedModelBuilder function.

The main lines for the saving:

builder = tf.saved_model.builder.SavedModelBuilder(graph_location)

builder.add_meta_graph_and_variables(sess, ["cnn_mnist"])

builder.save()

A code to save the model :

...
def main(_):
  # Import data
  mnist = input_data.read_data_sets(FLAGS.data_dir)

  # Create the model
  x = tf.placeholder(tf.float32, [None, 784])

  # Define loss and optimizer
  y_ = tf.placeholder(tf.int64, [None])

  # Build the graph for the deep net
  y_conv, keep_prob = deepnn(x) # an unknow model model

  with tf.name_scope('loss'):
    cross_entropy = tf.losses.sparse_softmax_cross_entropy(
        labels=y_, logits=y_conv)
  cross_entropy = tf.reduce_mean(cross_entropy)

  with tf.name_scope('adam_optimizer'):
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

  with tf.name_scope('accuracy'):
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), y_)
    correct_prediction = tf.cast(correct_prediction, tf.float32)
  accuracy = tf.reduce_mean(correct_prediction)

  graph_location ="tmp/"
  print('Saving graph to: %s' % graph_location)
  **builder = tf.saved_model.builder.SavedModelBuilder(graph_location)**

  train_writer = tf.summary.FileWriter(graph_location)
  train_writer.add_graph(tf.get_default_graph())

  saver = tf.train.Saver(max_to_keep=1)

  with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    **builder.add_meta_graph_and_variables(sess, ["cnn_mnist"])**
    for i in range(20000):
      batch = mnist.train.next_batch(50)
      if i % 100 == 0:
        train_accuracy = accuracy.eval(feed_dict={
            x: batch[0], y_: batch[1], keep_prob: 1.0})
        print('step %d, training accuracy %g' % (i, train_accuracy))
      train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

    print('test accuracy %g' % accuracy.eval(feed_dict={
        x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

    **builder.save()**
    saver.save(sess, "tmp/my_checkpoint.ckpt", global_step =0)

if __name__ == '__main__':
  parser = argparse.ArgumentParser()
  parser.add_argument('--data_dir', type=str,
                      default='/tmp/tensorflow/mnist/input_data',
                      help='Directory for storing input data')
  FLAGS, unparsed = parser.parse_known_args()
  tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
`

A code to restore the model :

import tensorflow as tf

# récupération des poids 

export_dir = "tmp"
sess = tf.Session()
tf.saved_model.loader.load(sess,["cnn_mnist"], export_dir)

#trainable_var = tf.trainable_variables()
trainable_var = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
for var in trainable_var:
    print(var.name)`

Upvotes: 0

CAta.RAy
CAta.RAy

Reputation: 514

 output = sess.run(nn_output, feed_dict={ x: batch_x, keep_prob: 0.8 })

Where nn_output is the name is the output variable of the last layer of you network. You can save you variable using:

saver = tf.train.Saver([nn_output])
saver.save(sess, 'my_test_model',global_step=1000) # save every 1000 steps

and therefore in your code:

out_layer = tf.layers.dense(inputs=layer_1, units=6)

should be :

out_layer = tf.layers.dense(inputs=layer_1, units=6, name='nn_output')

To restore:

with tf.Session() as sess:    
saver = tf.train.import_meta_graph('my_test_model')
saver.restore(sess,tf.train.latest_checkpoint('./'))

Now you should have access to that node of the graph. If the name is not specified, it is difficult to recover that particular layer.

Upvotes: 0

Lasse Jacobs
Lasse Jacobs

Reputation: 512

Forgive me if I am wrong but tf.train.Saver() only saves the variable values not the graph itself. This means that if you want to load the model in a different file you need to rebuild the graph or somehow load the graph as well. Tensorflow documentation states:

The tf.train.Saver object not only saves variables to checkpoint files, it also restores variables. Note that when you restore variables from a file you do not have to initialize them beforehand.

Consider the following example:

One file that saves the model:

# Create some variables.
v1 = tf.get_variable("v1", shape=[3], initializer = tf.zeros_initializer) 
v2 = tf.get_variable("v2", shape=[5], initializer = tf.zeros_initializer)

inc_v1 = v1.assign(v1+1)
dec_v2 = v2.assign(v2-1)

# Add an op to initialize the variables.
init_op = tf.global_variables_initializer()

# Add ops to save and restore all the variables.
saver = tf.train.Saver()

# Later, launch the model, initialize the variables, do some work, and save the
# variables to disk.
with tf.Session() as sess:
    sess.run(init_op)
    # Do some work with the model.
    inc_v1.op.run()
    dec_v2.op.run()
    # Save the variables to disk.
    save_path = saver.save(sess, "/tmp/model.ckpt")
    print("Model saved in file: %s" % save_path)

The other file that loads the previously saved model:

tf.reset_default_graph()

# Create some variables.
v1 = tf.get_variable("v1", shape=[3])
v2 = tf.get_variable("v2", shape=[5])

# Add ops to save and restore all the variables.
saver = tf.train.Saver()

# Later, launch the model, use the saver to restore variables from disk, and
# do some work with the model.
with tf.Session() as sess:
   # Restore variables from disk.
   saver.restore(sess, "/tmp/model.ckpt")
   print("Model restored.")
   # Check the values of the variables
   print("v1 : %s" % v1.eval())
   print("v2 : %s" % v2.eval())

Upvotes: 4

Related Questions