Reputation: 51
I know how to calculate the scalar of the velocity vector after a collision with 2 circles (as per this link: https://gamedevelopment.tutsplus.com/tutorials/how-to-create-a-custom-2d-physics-engine-the-basics-and-impulse-resolution--gamedev-6331)
These circles cannot rotate and do not have friction but can have different masses, however I cannot seem to find out any way to find the unit vector that I need to multiply the scalar of velocity by to get the new velocity of the particles after the collision.
I also know how to check if 2 circles are colliding.
Also, I am only dealing with this in a purely "maths-sense" (ie. the circles have a center and a radius), and would like to know how I can represent these circles on the screen in python 3.0.
The vector class:
class Vector():
def __init__(self,x,y):
self.x = x
self.y = y
def add(self, newVector):
return Vector(self.x+newVector.x, self.y+newVector.y)
def subtract(self,newVector):
return Vector(self.x-newVector.x, self.y-newVector.y)
def equals(self, newVector):
return Vector(newVector.x,newVector.y)
def scalarMult(self, scalar):
return Vector(self.x*scalar, self.y*scalar)
def dotProduct(self, newVector):
return (self.x*newVector.x)+(self.y*newVector.y
def distance(self):
return math.sqrt((self.x)**2 +(self.y)**2)
The circle class:
class Particles():
def __init__(self,currentPos, oldPos, accel, dt,mass, center, radius):
self.currentPos = currentPos
self.oldPos = oldPos
self.accel = accel
self.dt = dt
self.mass = mass
self.center = center
self.radius = radius
def doVerletPosition(currentPos, oldPos, accel, dt):
a = currentPos.subtract(oldPos)
b = currentPos.add(a)
c = accel.scalarMult(dt)
d = c.scalarMult(dt)
return d.add(b)
def doVerletVelocity(currentPos, oldPos, dt):
deltaD = (currentPos.subtract(oldPos))
return deltaD.scalarMult(1/dt)
def collisionDetection(self, center, radius):
xCenter = (self.radius).xComponent()
yCenter = (self.radius).yComponent()
xOther = radius.xComponent()
yOther = radius.yComponent()
if ((xCenter - xOther)**2 + (yCenter-yOther)**2 < (self.radius + radius)**2):
return True
else:
return False
I do know about AABBs, but I am only using around 10 particles for now, and AABBs are not necessary now.
Upvotes: 0
Views: 894
Reputation: 2135
You know that the force transmitted between the two discs has to go along the "normal vector" for this collision, which is easy to get - it's just the vector along the line connecting the centers of the two discs.
You have four constraints: conservation of momentum (which counts for two constraints since it applies in x and y), conservation of energy, and this "force along normal" constraint. And you have four unknowns, namely the x and y components of the final velocities. Four equations and four unknowns, you can solve for your answer. Due to my background in physics, I've written this out in terms of momentum instead of velocity, but hopefully that's not too hard to parse. (Note, for instance, that kinetic energy is equal to p**2/2m
or 1/2 mv**2
.)
## conservation of momentum
p_1_x_i + p_2_x_i = p_1_x_f + p_2_x_f ## p_1_x_i := momentum of disc _1_ in _x_ axis intially _i
p_1_y_i + p_2_x_i = p_1_y_f + p_2_y_f
## conservation of energy
(p_1_x_i**2 + p_1_y_i**2)/(2*m_1) + (p_2_x_i**2 + p_2_y_i**2)/(2*m_2) = (p_1_x_f**2 + p_1_y_f**2)/(2*m_1) + (p_2_x_f**2 + p_2_y_f**2)/(2*m_2)
## impulse/force goes along the normal vector
tan(th) := (x_2-x_1)/(y_2-y_1) # tangent of the angle of the collision
j_1_x := p_1_x_i - p_1_x_f # change in momentum aka impulse
j_1_y := p_1_y_i - p_1_y_f
tan(th) = -j_1_x/j_1_y
(I hope the notation is clear. It would be much clearer if I could use latex, but stackoverflow doesn't support it.)
Hope this helps!
Upvotes: 1