Reputation: 5126
I have a requirement to check records that change from one DataFrame to Another. It must match on all columns.
one is an excel file (new_df
), one is a SQL Query (sql_df
). The shape is ~20,000 rows by 39 columns. I thought this would be a good job for df.equals(other_df)
Currently I am using the following:
import pandas as pd
import numpy as np
new_df = pd.DataFrame({'ID' : [0 ,1, 2, 3, 4, 5, 6, 7, 8, 9],
'B' : [1,0,3,5,0,0,np.NaN,9,0,0],
'C' : [10,0,30,50,0,0,4,10,1,3],
'D' : [1,0,3,4,0,0,7,8,0,1],
'E' : ['Universtiy of New York','New Hampshire University','JMU','Oklahoma State','Penn State',
'New Mexico Univ','Rutgers','Indiana State','JMU','University of South Carolina']})
sql_df= pd.DataFrame({'ID' : [0 ,1, 2, 3, 4, 5, 6, 7, 8, 9],
'B' : [1,0,3,5,0,0,np.NaN,9,0,0],
'C' : [10,0,30,50,0,0,4,10,1,0],
'D' : [5,0,3,4,0,0,7,8,0,1],
'E' : ['Universtiy of New York','New Hampshire University','NYU','Oklahoma State','Penn State',
'New Mexico Univ','Rutgers','Indiana State','NYU','University of South Carolina']})
# creates an empty list to append to
differences = []
# for all the IDs in the dataframe that should not change check if this record is the same in the database
# must use reset_index() so the equals() will work as I expect it to
# if it is not the same, append to a list which has the Aspn ID that is failing, along with the columns that changed
for unique_id in new_df['ID'].tolist():
# get the id from the list, and filter both sql and new dfs to this record
if new_df.loc[new_df['ID'] == unique_id].reset_index(drop=True).equals(sql_df.loc[sql_df['ID'] == unique_id].reset_index(drop=True)) is False:
bad_columns = []
for column in new_df.columns.tolist():
# if not the same above, check which column using the same logic
if new_df.loc[new_df['ID'] == unique_id][column].reset_index(drop=True).equals(sql_df.loc[sql_df['ID'] == unique_id][column].reset_index(drop=True)) is False:
bad_columns.append(column)
differences.append([unique_id, bad_columns])
I later take differences
and bad_columns
and do other tasks with them.
There are many loops which I hope to avoid... as this may be the cause of my performance issue. It currently takes over 5 minutes for 20,000 records (will vary on hardware), which is abysmal performance. I was thinking adding/concatenating all the columns into one long string to compare instead, but that seems like another inefficient way. What would be a better way of solving this/how can I avoid this messy appending to an empty list solution?
Upvotes: 1
Views: 869
Reputation: 3138
Get filtered dataframe showing only rows with differences:
result_df = new_df[new_df != sql_df].dropna(how='all')
>>> result_df
Out[]:
B C D E ID
0 NaN NaN 1.0 NaN NaN
2 NaN NaN NaN JMU NaN
8 NaN NaN NaN JMU NaN
9 NaN 3.0 NaN NaN NaN
Get tuples of ID
and columns names where there is a difference, which is the output you where trying to produce.
This should work even if you have several columns with difference for the same ID
.
result_df.set_axis(labels=new_df.ID[result_df.index], axis=0)
>>> result_df.apply(lambda x: (x.name, result_df.columns[x.notnull()]), axis=1)
Out[]:
ID
0 (0, [D])
2 (2, [E])
8 (8, [E])
9 (9, [C])
dtype: object
Please note that apply
is close to a for
loop, so the second part will likely take more time than the first.
Upvotes: 2
Reputation: 210832
In [26]: new_df.ne(sql_df)
Out[26]:
B C D E ID
0 False False True False False
1 False False False False False
2 False False False True False
3 False False False False False
4 False False False False False
5 False False False False False
6 True False False False False
7 False False False False False
8 False False False True False
9 False True False False False
Show dissimilar columns:
In [27]: new_df.ne(sql_df).any(axis=0)
Out[27]:
B True
C True
D True
E True
ID False
dtype: bool
Show dissimilar rows:
In [28]: new_df.ne(sql_df).any(axis=1)
Out[28]:
0 True
1 False
2 True
3 False
4 False
5 False
6 True
7 False
8 True
9 True
dtype: bool
UPDATE:
showing dissimilar cells:
In [86]: x = new_df.ne(sql_df)
In [87]: new_df[x].loc[x.any(1)]
Out[87]:
B C D E ID
0 NaN NaN 1.0 NaN NaN
2 NaN NaN NaN JMU NaN
6 NaN NaN NaN NaN NaN
8 NaN NaN NaN JMU NaN
9 NaN 3.0 NaN NaN NaN
In [88]: sql_df[x].loc[x.any(1)]
Out[88]:
B C D E ID
0 NaN NaN 5.0 NaN NaN
2 NaN NaN NaN NYU NaN
6 NaN NaN NaN NaN NaN
8 NaN NaN NaN NYU NaN
9 NaN 0.0 NaN NaN NaN
Upvotes: 4