Reputation: 1904
While making a CNN model like this:
# function to build model
def create_model(features):
with C.layers.default_options(init=C.glorot_uniform(), activation=C.LeakyReLU):
h = features
h = C.layers.Convolution2D(filter_shape=(5,5),
num_filters=8,
strides=(2,2),
pad=True, name='first_conv')(h)
h = C.layers.Convolution2D(filter_shape=(5,5),
num_filters=16,
strides=(2,2),
pad=True, name='second_conv')(h)
r = C.layers.Dense(num_output_classes, activation=None, name='classify')(h)
return r
# Create the model
z = create_model(x)
# Print the output shapes / parameters of different components
print("Output Shape of the first convolution layer:", z.first_conv.shape)
print("Bias value of the last dense layer:", z.classify.b.value)
AttributeError Traceback (most recent call last) in () 1 # Create the model ----> 2 z = create_model(x) 3 4 # Print the output shapes / parameters of different components 5 print("Output Shape of the first convolution layer:", z.first_conv.shape)
in create_model(features) 2 3 def create_model(features): ----> 4 with C.layers.default_options(init=C.glorot_uniform(), activation=C.LeakyReLU): 5 h = features 6 h = C.layers.Convolution2D(filter_shape=(5,5),
AttributeError: module 'cntk' has no attribute 'LeakyReLU'
I am new to deep learning so I might be missing something simple. Any help is appreciated. Thanks!
Upvotes: 2
Views: 1354
Reputation: 41
Change the following line as:
with C.layers.default_options(init=C.glorot_uniform(), activation=C.leaky_relu):
Upvotes: 1
Reputation: 53758
Try C.leaky_relu
:
>>> C.leaky_relu([[-1, -0.5, 0, 1, 2]]).eval()
array([[-0.01 , -0.005, 0. , 1. , 2. ]], dtype=float32)
Upvotes: 2