Reputation: 195
I want to read an grayscale image, say something with (248, 480, 3) shape, then use each element of it as the lam value for making a Poisson random value and do this for each element and make a new data set with the same shape. I want to do this as much as nscan
, then I want to add them all together and put them in a new data set and plot it again to get something that is similar to the first image that I put in the beginning. This code is working but it is extremely slow, I was wondering if there is any way to make it faster?
import numpy as np
import matplotlib.pyplot as plt
my_image = plt.imread('myimage.png')
def genP(data):
new_data = np.zeros(data.shape)
for i in range(data.shape[0]):
for j in range(data.shape[1]):
for k in range(data.shape[2]):
new_data[i, j, k] = np.random.poisson(lam = data[i, j, k])
return new_data
def get_total(data, nscan = 1):
total = genP(data)
for i in range(nscan):
total += genP(data)
total = total/nscan
plt.imshow(total)
plt.show()
get_total(my_image, 100)
Upvotes: 2
Views: 185
Reputation: 11075
numpy.random.poisson can entirely replace your genP()
function... This is basically guaranteed to be much faster.
If size is None (default), a single value is returned if lam is a scalar. Otherwise, np.array(lam).size samples are drawn
def get_total(data, nscan = 1):
total = np.random.poisson(lam=data)
for i in range(nscan):
total += np.random.poisson(lam=data)
total = total/nscan
plt.imshow(total)
plt.show()
Upvotes: 1