Reputation: 81
I'm trying to establish communication to a Tensorflow Serving session. The following code works, but it is a bit slow. Is there a way to improve it? I suspect the problem lay in the fourth line - the output is giving as a list of float_val elements, and I need to convert them to a float array and reshape them.
Is there a way to get the server output in the right shape? I have defined the output signature as below (which I think is correct).
prediction_channel, request_form = setup_channel(args.server)
request_form.inputs['images'].CopyFrom(
tf.contrib.util.make_tensor_proto(img_transformed, shape=list(img_transformed.shape)))
output = prediction_channel.Predict.future(request_form, 5.0)
output = np.array(output.result().outputs['scores'].float_val).reshape(1, 16, 64, 64)
The first line opens the channel to the server by using the function
def setup_channel(hostport):
host, port = hostport.split(':')
channel = implementations.insecure_channel(host, int(port))
stub = prediction_service_pb2.beta_create_PredictionService_stub(channel)
request = predict_pb2.PredictRequest()
request.model_spec.name = 'hg'
request.model_spec.signature_name = 'predict_images'
return stub, request
The output signature is:
tensor_info_x = tf.saved_model.utils.build_tensor_info(model.input_tensor)
tensor_info_y = tf.saved_model.utils.build_tensor_info(model.predict)
prediction_signature = (
tf.saved_model.signature_def_utils.build_signature_def(
inputs={'images': tensor_info_x},
outputs={'scores': tensor_info_y},
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME))**
and model predict has a shape of (1, 16, 64, 64).
Upvotes: 1
Views: 1007
Reputation: 21
I am not sure how you are handling your Predict.future(request_form, 5.0)
, but the same should apply for the sync response handling; tf offers a utility function make_ndarray
:
res = stub.Predict(request, timeout).outputs[tensor_name]
arr = tf.make_ndarray(res)
arr
will be an np array of the correct dims.
Where tensor_name
is the name defined in your signature e.g.
tf.saved_model.signature_def_utils.build_signature_def(
inputs={'images': inp_tensor_info},
outputs={'scores': out_tensor_info},
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME
)
would require
res = stub.Predict(request, timeout).outputs['scores']
arr = tf.make_ndarray(res)
Upvotes: 2