Reputation: 81
I have a csv file(or dataframe) like below :
Text Location State
A Florida, USA Florida
B NY New York
C
D abc
And a dictionary with key value pair as :
stat_map = {
'FL': 'Florida',
'NY': 'NewYork',
'AR': 'Arkansas',
}
How may I delete row 3rd and 4th i.e. row with Text C & D so that my dataframe contains only those rows for which i have value in dictionary. The final output should look like :
Text Location State
A Florida, USA Florida
B NY New York
Please help.
Upvotes: 0
Views: 3171
Reputation: 3138
What you're looking for is pandas.Series.map()
, which replaces a value by that provided in a mapper
, here states_map
.
I will reuse data from you previous question for illustration
import pandas as pd
states_map = {
'AK': 'Alaska',
'AL': 'Alabama',
'AR': 'Arkansas',
'CA': 'California', # Enrich the dict for the current example
'NY': 'New York' # Same as above
}
>>> df
Out[]:
State
0 California, USA
1 Beverly Hills, CA
2 California
3 CA
4 NY, USA
5 USA
Using the discussed method with map
will give
states = df['State'].str.split(', ').str[0]
>>> states
Out[]:
0 California
1 Beverly Hills
2 California
3 CA
4 NY
5 USA
Name: State, dtype: object
>>> states.map(states_map)
Out[]:
0 NaN
1 NaN
2 NaN
3 California
4 New York
5 NaN
Name: State, dtype: object
But this is not optimal, as you loose information from row 1 with the split
and from rows 0 and 2 with the map
.
I think it can be done better like this:
split
using expand=True
df_parts = df.State.str.split(', ', expand=True)
>>> df_parts
Out[]:
0 1
0 California USA
1 Beverly Hills CA
2 California None
3 CA None
4 NY USA
5 USA None
mask = df_parts.isin(states_map.values())
>>> df_parts[mask]
Out[]:
0 1
0 California NaN
1 NaN NaN
2 California NaN
3 NaN NaN
4 NaN NaN
5 NaN NaN
Using ~
(bitwise NOT) gives us the inverse of the mask.
df_unknown = df_parts[~mask]
>>> df_unknown
Out[]:
0 1
0 NaN USA
1 Beverly Hills CA
2 NaN None
3 CA None
4 NY USA
5 USA None
map
where state is not known>>> df_unknown.apply(lambda col: col.map(states_map))
Out[]:
0 1
0 NaN NaN
1 NaN California
2 NaN NaN
3 California NaN
4 New York NaN
5 NaN NaN
And set these values in masked df_parts
df_parts[~mask] = df_unknown.apply(lambda col: col.map(states_map))
>>> df_parts
Out[]:
0 1
0 California NaN
1 NaN California
2 California NaN
3 California NaN
4 New York NaN
5 NaN NaN
>>> df_parts[0].fillna(df_parts[1]) # Fill blanks in col 1 with values in col 2
Out[]:
0 California
1 California
2 California
3 California
4 New York
5 NaN
Name: 0, dtype: object
Replace curated values in original dataframe
df['State_new'] = df_parts[0].fillna(df_parts[1])
>>> df
Out[]:
State State_new
0 California, USA California
1 Beverly Hills, CA California
2 California California
3 CA California
4 NY, USA New York
5 USA NaN
It may not be a perfect approach, but hope it will help.
Upvotes: 2