Reputation: 1393
I have a pandas dataframe like this:
aa bb cc dd ee
a a b b foo
a b a a foo
b a a a bar
b b b b bar
I want to add a new column if value in columns 1 to 4 is a
The results would be like this:
aa bb cc dd ee ff
a a b b foo a
a b a a foo a
b a a a bar a
b b b b bar b
The logic is:
if value in any of columns 1 to 4 is a
then column ff
is a
else it's b
I can define a function and do each column manually like:
def some_function(row);
if row['aa']=='a' or row['bb']=='a' or row['cc']=='a' or row[dd]=='a':
return 'a'
return 'b'
But I'm looking for a solution that can scale across n
number of columns.
Appreciate any help!
Upvotes: 4
Views: 6668
Reputation: 863166
Use numpy.where
with condition created by eq
(==) with any
for check at least one True
per row:
cols = ['aa','bb','cc', 'dd']
df['ff'] = np.where(df[cols].eq('a').any(1), 'a', 'b')
print (df)
aa bb cc dd ee ff
0 a a b b foo a
1 a b a a foo a
2 b a a a bar a
3 b b b b bar b
Detail:
print (df[cols].eq('a'))
aa bb cc
0 True True False
1 True False True
2 False True True
3 False False False
print (df[cols].eq('a').any(1))
0 True
1 True
2 True
3 False
dtype: bool
If need custom function:
def some_function(row):
if row[cols].eq('a').any():
return 'a'
return 'b'
df['ff'] = df.apply(some_function, 1)
print (df)
aa bb cc dd ee ff
0 a a b b foo a
1 a b a a foo a
2 b a a a bar a
3 b b b b bar b
Upvotes: 4