Reputation: 633
I have the code below that turns a CSV with two columns into a dictionary:
import pandas as pd
df = pd.read_csv('file.csv', sep=',')
dct = df.groupby('group').ip.apply(lambda x: x.tolist()).to_dict()
print(dct)
{'A': ['192.168.1.1', '192.168.1.4'],
'B': ['192.168.1.2', '192.168.1.5'],
'C': ['192.168.1.3', '192.168.1.6']}
How would I go about doing the reverse of that? I would have this dictionary:
dct = {'A': ['192.168.1.1', '192.168.1.4'],
'B': ['192.168.1.2', '192.168.1.5'],
'C': ['192.168.1.3', '192.168.1.6']}
And want to turn it to CSV with two columns like this:
ip,group
192.168.1.1,A
192.168.1.2,B
192.168.1.3,C
192.168.1.4,A
192.168.1.5,B
192.168.1.6,C
User @cᴏʟᴅsᴘᴇᴇᴅ helped me for the first part and pandas is above my python skills at the moment. Thanks for any help!
Upvotes: 0
Views: 246
Reputation: 403128
pd.DataFrame
+ melt
.
df = pd.DataFrame(dct).melt(var_name='group', value_name='ip')
print(df)
group ip
0 A 192.168.1.1
1 A 192.168.1.4
2 B 192.168.1.2
3 B 192.168.1.5
4 C 192.168.1.3
5 C 192.168.1.6
Save to a CSV using df.to_csv
:
df.to_csv('out.csv', sep=',', index=False)
Upvotes: 1