Reputation: 687
The csv files are tab delimited
file1.csv:
id_album name date
001 Nevermind 24/09/1991
...
file2.csv:
id_song id_album name
001 001 Smells Like Teen Spirit
002 001 In Bloom
...
I would like to obtain this output.csv :
id_album name date songs
001 Nevermind 24/09/1991 001,Smells Like Teen Spirit,002,In Bloom,...
Do you see a way to do it in Bash (preferably) or Python ?
I have a lot of records in my csv files (millions of lines).
EDIT
I tried join / sed / awk but was not able to manage the 1 to N relation
Upvotes: 0
Views: 195
Reputation: 122032
from io import StringIO
file1 = """id_album,name,date
001,Nevermind,24/09/1991"""
file2 = """id_song,id_album,name
001,001,Smells Like Teen Spirit
002,001,In Bloom"""
df1 = pd.read_csv(StringIO(file1))
df1 = df1.rename(columns={'name':'album_name'})
df2 = pd.read_csv(StringIO(file2))
df2 = df2.rename(columns={'name':'song_name'})
df3 = df1.merge(df2, on='id_album')
df4 = pd.DataFrame(list({album['id_album'].unique()[0]:','.join(list(album[['id_song', 'song_name']].astype(str).stack())) for idx, album in df3.groupby(['id_album'])}.items()), columns=['id_album', 'song_id_name'])
df_want = df1.merge(df4)
[out]:
>>> df_want
id_album album_name date song_id_name
0 1 Nevermind 24/09/1991 1,Smells Like Teen Spirit,2,In Bloom
Given:
>>> from io import StringIO
>>> file1 = """id_album,name,date
... 001,Nevermind,24/09/1991"""
>>> file2 = """id_song,id_album,name
... 001,001,Smells Like Teen Spirit
... 002,001,In Bloom"""
>>> df1 = pd.read_csv(StringIO(file1))
>>> df1 = df1.rename(columns={'name':'album_name'})
>>> df2 = pd.read_csv(StringIO(file2))
>>> df2 = df2.rename(columns={'name':'song_name'})
>>> df1
id_album album_name date
0 1 Nevermind 24/09/1991
>>> df2
id_song id_album name
0 1 1 Smells Like Teen Spirit
1 2 1 In Bloom
First merge the 2 DataFrames on id_album
column:
>>> df3 = df1.merge(df2, on='id_album')
>>> df3
id_album album_name date id_song song_name
0 1 Nevermind 24/09/1991 1 Smells Like Teen Spirit
1 1 Nevermind 24/09/1991 2 In Bloom
Now for some pandas
trick:
1. First group the rows by the `id_album` column:
2. In each group, get the `id_song` and `song_name` columns and stack them
>> [','.join(list(album[['id_song', 'song_name']].astype(str).stack())) for idx, album in df3.groupby(['id_album'])]
['1,Smells Like Teen Spirit,2,In Bloom']
In a similar manner, get the album_name by from .groupby()
:
>>> [album['album_name'].unique()[0] for idx, album in df3.groupby(['id_album'])]
['Nevermind']
Lets combine the two groupby
operations:
>>> {album['album_name'].unique()[0]:','.join(list(album[['id_song', 'song_name']].astype(str).stack())) for idx, album in df3.groupby(['id_album'])}
{'Nevermind': '1,Smells Like Teen Spirit,2,In Bloom'}
>>> album2songs = {album['album_name'].unique()[0]:','.join(list(album[['id_song', 'song_name']].astype(str).stack())) for idx, album in df3.groupby(['id_album'])}
Put that album2songs
into a dataframe:
>>> df4 = pd.DataFrame(list(album2songs.items()), columns=['album_name', 'song_id_name'])
>>> df4
album_name song_id_name
0 Nevermind 1,Smells Like Teen Spirit,2,In Bloom
Now join df1
and df4
:
>>> df1.merge(df4)
id_album album_name date song_id_name
0 1 Nevermind 24/09/1991 1,Smells Like Teen Spirit,2,In Bloom
BTW, @RomanPerekhrest awk
solution is way cooler!
Upvotes: 1
Reputation: 92854
Discover awk language:
awk -F'[[:space:]][[:space:]]+' 'NR==FNR{ if(NR>1) a[$2]=($2 in a? a[$2]",":"")$1","$3; next}
FNR==1{ print $0,"songs" }
$1 in a{ print $0,a[$1] }' file2.csv OFS='\t' file1.csv > output.csv
The output.csv
content:
id_album name date songs
001 Nevermind 24/09/1991 001,Smells Like Teen Spirit,002,In Bloom
Upvotes: 2