Reputation: 951
I'm trying to implement a simple voting score in a csv file using pandas. Basically, if the `dataframe['C'] == Active and dataframe['Count'] == 0, then dataframe['Combo'] == 0. If dataframe['C'] == Active and dataframe['Count'] == 1; then dataframe['Combo'] == 1. If dataframe['C'] == Active and dataframe['Count'] == 2; then dataframe['Combo'] == 2 and so on.
This is my dataframe:
A B C Count Combo
Ptn1 Lig1 Inactive 0
Ptn1 Lig1 Inactive 1
Ptn1 Lig1 Active 2 2
Ptn2 Lig2 Active 0 0
Ptn2 Lig2 Inactive 1
Ptn3 Lig3 Active 0 0
Ptn3 Lig3 Inactive 1
Ptn3 Lig3 Inactive 2
Ptn3 Lig3 Inactive 3
Ptn3 Lig3 Active 4 3
This is my code so far for clarity:
import pandas as pd
df = pd.read_csv('affinity.csv')
VOTE = 0
df['Combo'] = ''
df.loc[(df['Classification] == 'Active') & (df['Count'] == 0), 'Combo'] = VOTE
df.loc[(df['Classification] == 'Active') & (df['Count'] == 1), 'Combo'] = VOTE + 1
df.loc[(df['Classification] == 'Active') & (df['Count'] == 2), 'Combo'] = VOTE + 2
df.loc[(df['Classification] == 'Active') & (df['Count'] > 3), 'Combo'] = VOTE + 3
My code was able to do this correctly. However, there are two 'Active' values for the pair Ptn3-Lig3; one at dataframe['Count'] = 0 and another at dataframe['Count'] = 4.
Is there a way to ignore the second value (i.e. consider only the smallest dataframe['Count'] value) and add the corresponding number to dataframe['Combo']?
I know pandas.DataFrame.drop_duplicates()
might be a way to select only unique values, but it would be really good avoid deleting any rows.
Upvotes: 0
Views: 64
Reputation: 402493
You could do a groupby
+ apply
:
def foo(x):
m = x['C'].eq('Active')
if m.any():
return pd.Series(np.where(m, x.loc[m, 'Count'].head(1), np.nan))
else:
return pd.Series([np.nan] * len(x))
df['Combo'] = df.groupby(['A', 'B'], group_keys=False).apply(foo).values
print(df)
A B C Count Combo
0 Ptn1 Lig1 Inactive 0
1 Ptn1 Lig1 Inactive 1
2 Ptn1 Lig1 Active 2 2
3 Ptn2 Lig2 Active 0 0
4 Ptn2 Lig2 Inactive 1
5 Ptn3 Lig3 Active 0 0
6 Ptn3 Lig3 Inactive 1
7 Ptn3 Lig3 Inactive 2
8 Ptn3 Lig3 Inactive 3
9 Ptn3 Lig3 Active 4 0
Another alternative with groupby
+ merge
:
df = df.groupby(['A', 'B', 'C'])['C', 'Count']\
.apply(lambda x: x['Count'].values[0] if x['C'].eq('Active').any() else np.nan)\
.reset_index(name='Combo').fillna('').merge(df)
print(df)
A B C Combo Count
0 Ptn1 Lig1 Active 2 2
1 Ptn1 Lig1 Inactive 0
2 Ptn1 Lig1 Inactive 1
3 Ptn2 Lig2 Active 0 0
4 Ptn2 Lig2 Inactive 1
5 Ptn3 Lig3 Active 0 0
6 Ptn3 Lig3 Active 0 4
7 Ptn3 Lig3 Inactive 1
8 Ptn3 Lig3 Inactive 2
9 Ptn3 Lig3 Inactive 3
Note that this ends up sorting your groups.
Upvotes: 1