Nikhil Baby
Nikhil Baby

Reputation: 883

Converting Scala code to PySpark

I have found the following code for selecting n rows from dataframe grouped by unique_id.

import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions.row_number

val window = Window.partitionBy("userId").orderBy($"rating".desc)

dataframe.withColumn("r", row_number.over(window)).where($"r" <= n)

I have tried the following:

from pyspark.sql.functions import row_number, desc
from pyspark.sql.window import Window

w = Window.partitionBy(post_tags.EntityID).orderBy(post_tags.Weight)
newdata=post_tags.withColumn("r", row_number.over(w)).where("r" <= 3)

I get the following error:

AttributeError: 'function' object has no attribute 'over'

Please help me on the same.

Upvotes: 1

Views: 5045

Answers (1)

Nikhil Baby
Nikhil Baby

Reputation: 883

I found the answer to this:

from pyspark.sql.window import Window
from pyspark.sql.functions import rank, col

window = Window.partitionBy(df['user_id']).orderBy(df['score'].desc())

df.select('*', rank().over(window).alias('rank')) 
  .filter(col('rank') <= 2) 
  .show() 

Credits to @mtoto for his answer https://stackoverflow.com/a/38398563/5165377

Upvotes: 1

Related Questions