Reputation: 403128
Given a sample MultiIndex:
idx = pd.MultiIndex.from_product([[0, 1, 2], ['a', 'b', 'c', 'd']])
df = pd.DataFrame({'value' : np.arange(12)}, index=idx)
df
value
0 a 0
b 1
c 2
d 3
1 a 4
b 5
c 6
d 7
2 a 8
b 9
c 10
d 11
How can I efficiently convert this to a tabular format like so?
a b c d
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
Furthermore, given the dataframe above, how can I bring it back to its original multi-indexed state?
What I've tried:
pd.DataFrame(df.values.reshape(-1, df.index.levels[1].size),
index=df.index.levels[0], columns=df.index.levels[1])
Which works for the first problem, but I'm not sure how to bring it back to its original from there.
Upvotes: 2
Views: 1043
Reputation: 375865
Another alternative, which you should think of when using stack/unstack (though unstack is clearly better in this case!) is pivot_table
:
In [11]: df.pivot_table(values="value", index=df.index.get_level_values(0), columns=df.index.get_level_values(1))
Out[11]:
a b c d
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
Upvotes: 2
Reputation: 323376
By using get_level_values
pd.crosstab(df.index.get_level_values(0),df.index.get_level_values(1),values=df.value,aggfunc=np.sum)
Out[477]:
col_0 a b c d
row_0
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
Upvotes: 2
Reputation: 77027
Using unstack
and stack
In [5359]: dff = df['value'].unstack()
In [5360]: dff
Out[5360]:
a b c d
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
In [5361]: dff.stack().to_frame('name')
Out[5361]:
name
0 a 0
b 1
c 2
d 3
1 a 4
b 5
c 6
d 7
2 a 8
b 9
c 10
d 11
Upvotes: 5