Reputation: 37
I have a class called MatrixAlt and i'm trying to multi thread a function to do some work on that matrix.
My general method worked when I just implemented it in a couple of functions. But when I try to bring it into the class methods, I get an error.
The problematic line (or where it highlights anyway) is 4 lines from the end and the error message is in the comments just above it.
#include <vector>
#include <future>
#include <thread>
class MatrixAlt
{
public:
MatrixAlt();
// initilaise the matrix to constant value for each entry
void function01(size_t maxThreads);
void function02(size_t threadIndex);
};
MatrixAlt::MatrixAlt()
{
}
void MatrixAlt::function02(size_t threadIndex)
{
// do some stuff
return;
}
void MatrixAlt::function01(size_t maxThreads)
{
// To control async threads and their results
std::vector<std::future<bool>> threadsIssued;
// now loop through all the threads and orchestrate the work to be done
for (size_t threadIndex = 0; threadIndex < maxThreads; ++threadIndex)
{
// line 42 gives error:
// 'MatrixAlt::function02': non-standard syntax; use '&' to create a pointer to member
// 'std::async': no matching overloaded function found
threadsIssued.push_back(std::async(function02, threadIndex));
}
return;
}
Upvotes: 2
Views: 239
Reputation: 16119
Your first problem is solved like this
threadsIssued.push_back(std::async(&MatrixAlt::function02, this, threadIndex));
You need to specify the exact class::function and take its address and which instance of the class your doing it for, and then the parameters.
The second problem which you haven't see yet is this line
std::vector<std::future<bool>> threadsIssued;
All those futures will be lost in scope exit, like tears in rain. Time to destroy.
Freely after Blade runner.
All those moments will be lost in time, like tears in rain. Time to die.
Upvotes: 1
Reputation: 17714
Whenever you have a member function in C++, that function takes the object itself as an implicit first argument. So you need to pass the object as well, but even then, it can't be called with the same syntax as a normal function that takes the object.
The simplest way to setup an asynchronous job in C++ is typically just to use lambdas. They've very clear and explicit. So, for example, you could change your call to:
threadsIssued.push_back(std::async([this] (size_t t) { this->function02(t);}, threadIndex));
This lambda is explicitly capturing the this
pointer, which tells us that all of the function02
calls will be called on the same object that the calling function01
is called on.
In addition to being correct, and explicit, this also helps highlight an important point: all of the function02
objects will be running with mutable access to the same MatrixAlt
object. This is very dangerous, so you need to make sure that function02
is thread safe, one way or another (usually easy if its conceptually const, otherwise perhaps need a mutex, or something else).
Upvotes: 0