Reputation: 65
I am a beginner for Python programming. I am exploring Regex. I am trying to Extract a word(Database name) from the Description column. I am not able to give multiple Regex patterns.
please see the description and the code below.
Summary: AD1: Low free DATA space in database AD1ADS: 10.00% Date: 06/28/2017 Severity: Warning Res
Summary: Database SV1V1CH has used log space: 90.00% Date: 02/06/2017 Severity: Warning ResourceId: s
Summary: SAP SolMan Sys=SM1Tempdb,MO=AGEEPM49,Alert=Database Host Status,Desc=A database hos
*** Clearing Event Received *** SNG01AMMSOL04_age SAP SolMan Sys=SM1_SNG01AMMSOL04,MO=AGEEQM46,Alert
AD1ADS
SV1V1CH
SM1Tempdb
SNG01AMMSOL04
sentence = df['Description']
frame = pd.DataFrame({'logs': sentence})
import re
pattern = re.compile(r'[dD]atabase (\w+)|Sys=(\w+)')
for _, line in frame.iterrows():
name = pattern.findall(line['logs'])
if name:
line['names'] = name[0]
else:
line['names'] = 'Miscellaneous'
Could anyone please tell me, what mistake I am doing it here.
(u'AD1ADS', u'')
(u'SV1V1CH', u'')
(u'', u'CM1_CHE01AMMSOL04')
Miscellaneous
Upvotes: 3
Views: 8679
Reputation: 65
p = r'[dD]atabase (\w+)|Sys=(\w+)|SAP: (\w+)'
s = df['logs'].str.extractall(p)
print (s)
df['DBNames'] = s.apply(lambda x: ','.join(x.dropna()),axis=1).groupby(level=0).apply(', '.join)
df['DBNames'] = df['DBNames'].fillna('Miscellaneous')
print df
This worked for me :)
Upvotes: 1
Reputation: 862611
You can use str.extract
with fillna
:
p = r'[dD]atabase (\w+)|Sys=(\w+)'
s = df['logs'].str.extract(p, expand=True)
print (s)
0 1
0 AD1ADS NaN
1 SV1V1CH NaN
2 NaN SM1Tempdb
3 NaN SM1_SNG01AMMSOL04
df['db'] = s[0].fillna(s[1]).fillna('Miscellaneous')
#alternatively
#df['db'] = s[0].combine_first(s[1]).fillna('Miscellaneous')
print (df)
logs db
0 Summary: AD1: Low free DATA space in database ... AD1ADS
1 Summary: Database SV1V1CH has used log space: ... SV1V1CH
2 Summary: SAP SolMan Sys=SM1Tempdb,MO=AGEEPM49,... SM1Tempdb
3 *** Clearing Event Received *** SNG01AMMSOL04_... SM1_SNG01AMMSOL04
And if want extract all possible values use extractall
and then join
them if necessary:
p = r'[dD]atabase (\w+)|Sys=(\w+)'
s = df['logs'].str.extractall(p)
print (s)
0 1
match
0 0 AD1ADS NaN
1 0 SV1V1CH NaN
2 0 NaN SM1Tempdb
1 Host NaN
2 hos NaN
3 0 NaN SM1_SNG01AMMSOL04
df['db'] = s[0].fillna(s[1]).groupby(level=0).apply(', '.join)
df['db'] = df['db'].fillna('Miscellaneous')
print (df)
logs db
0 Summary: AD1: Low free DATA space in database ... AD1ADS
1 Summary: Database SV1V1CH has used log space: ... SV1V1CH
2 Summary: SAP SolMan Sys=SM1Tempdb,MO=AGEEPM49,... SM1Tempdb, Host, hos
3 *** Clearing Event Received *** SNG01AMMSOL04_... SM1_SNG01AMMSOL04
Upvotes: 4