Reputation: 3282
I have some C++ code that returns a std::function
. I would like to call this from some C code. Is this possible? As an example I have the following code:
typedef std::function<int(int)> AdderFunction;
AdderFunction makeAdder(int amount) {
return [amount] (int n) {
return n + amount;
};
}
extern "C" {
AdderFunction makeCAdder(int amount) {
return makeAdder(amount);
}
}
with clang++ -std=c++11 test.cpp
it results in the following warning:
'makeCAdder' has C-linkage specified, but returns user-defined type 'AdderFunction' (aka 'function<int (int)>') which is incompatible with C
I understand why this is happening, but wondering if there is a pattern to make it possible?
Upvotes: 21
Views: 6735
Reputation: 206607
The most portable method to interface between C/C++ will be to use pointers to pass data between languages and use non-member functions to make function calls.
The .h file:
#ifdef __cplusplus
extern "C" {
#endif
// Declare the struct.
struct Adder;
// Declare functions to work with the struct.
Adder* makeAdder(int amount);
int invokeAdder(Adder* adder, int n);
void deleteAdder(Adder* adder);
#ifdef __cplusplus
}
#endif
Implement them in a .cpp file as:
#include <functional>
typedef std::function<int(int)> AdderFunction;
struct Adder
{
AdderFunction f;
};
AdderFunction makeAdderFunction(int amount) {
return [amount] (int n) {
return n + amount;
};
}
Adder* makeAdder(int amount)
{
Adder* adder = new Adder;
adder->f = makeAdderFunction(amount);
return adder;
}
int invokeAdder(Adder* adder, int n)
{
return adder->f(n);
}
void deleteAdder(Adder* adder)
{
delete adder;
}
Upvotes: 17
Reputation: 54979
Another solution is to split the std::function
into a pointer to the closure and a pointer to the member function, and pass three things to the C function that wants to invoke the lambda:
void *
)void *
as well)Here’s a sample implementation.
#include <functional>
#include <iostream>
template<typename Closure, typename Result, typename... Args>
struct MemberFunctionPointer
{
Result (Closure::*value)(Args...) const;
};
template<typename Closure, typename Result, typename... Args>
MemberFunctionPointer<Closure, Result, Args...>
member_function_pointer(
Result (Closure::*const value)(Args...) const)
{
return MemberFunctionPointer<Closure, Result, Args...>{value};
}
template<typename Closure, typename Result, typename... Args>
Result
call(
const void *const function,
const void *const closure,
Args... args)
{
return
((reinterpret_cast<const Closure *>(closure))
->*(reinterpret_cast<const MemberFunctionPointer<Closure, Result, Args...>*>(function)->value))
(std::forward<Args>(args)...);
}
Sample usage from the C side:
int
c_call(
int (*const caller)(const void *, const void *, int),
const void *const function,
const void *const closure,
int argument)
{
return caller (function, closure, argument);
}
Sample usage from the C++ side:
int
main()
{
int captured = 5;
auto unwrapped = [captured] (const int argument) {
return captured + argument;
};
std::function<int(int)> wrapped = unwrapped;
auto function = member_function_pointer(&decltype(unwrapped)::operator());
auto closure = wrapped.target<decltype(unwrapped)>();
auto caller = &call<decltype(unwrapped), int, int>;
std::cout
<< c_call(
caller,
reinterpret_cast<const void *>(&function),
reinterpret_cast<const void *>(closure),
10)
<< '\n';
}
The reason for the wrapper struct is that you can’t cast a member function pointer to void *
or any other object pointer type, not even with reinterpret_cast
, so instead we pass the address of the member function pointer. You can choose to place the MemberFunctionPointer
structure on the heap, e.g. with unique_ptr
, if it needs to live longer than it does in this simple example.
You can also wrap these three arguments in a single structure on the C side, rather than pass them individually:
struct IntIntFunction
{
int (*caller)(const void *, const void *, int);
const void *function;
const void *closure;
};
#define INVOKE(f, ...) ((f).caller((f).function, (f).closure, __VA_ARGS__))
int
c_call(IntIntFunction function)
{
return INVOKE(function, 10);
}
Upvotes: 1
Reputation: 23510
The problem with this solution is when you call makeAdder
with parameter values.. Couldn't solve it but I'm posting just in case someone else can..
template <typename FunctionPointerType, typename Lambda, typename ReturnType, typename ...Args>
inline FunctionPointerType MakeFunc(Lambda&& lambda, ReturnType (*)(Args...))
{
thread_local std::function<ReturnType(Args...)> func(lambda);
struct Dummy
{
static ReturnType CallLambda(Args... args)
{
return func(std::forward<Args>(args)...);
}
};
return &Dummy::CallLambda;
}
template <typename FunctionPointerType, typename Lambda>
FunctionPointerType MakeFunc(Lambda&& lambda)
{
return MakeFunc<FunctionPointerType, Lambda>(std::forward<Lambda>(lambda), FunctionPointerType());
}
typedef int(*AdderFunction)(int);
AdderFunction makeAdder(int amount) {
return MakeFunc<int(*)(int)>([amount] (int n) {
return n + amount;
});
}
extern "C" {
typedef int(*CAdderFunction)(int);
CAdderFunction makeCAdder(int amount)
{
return makeAdder(amount);
}
}
It works by storing the lambda a thread local std::function
. Then return a pointer to a static function which will call the lambda with the parameters passed in.
I thought about using an unordered_map
and keeping track of each makeAdder
call but then you can't reference it from static context..
Upvotes: 0
Reputation: 138061
It's not possible to call a std::function
from C, because C doesn't support the language features that are required. C doesn't have templates, access modifiers, callable objects, virtual methods, or anything else that std::function
could use under the hood. You need to come up with a strategy that C can understand.
One such strategy is to copy/move your std::function
to the heap and return it as an opaque pointer. Then, you would provide another function through your C++ interface that takes that opaque pointer and calls the function that it contains.
// C side
struct function_opaque;
int call_opaque(struct function_opaque*, int param);
// C++ side
extern "C" {
struct function_opaque {
std::function<int(int)> f;
};
int call_opaque(function_opaque* func, int param) {
return func->f(param);
}
};
Of course, this comes with memory management implications.
Upvotes: 8
Reputation: 1309
You need to put the typedef inside the extern "C"
block at the minimum (to get it to compile as C++). I'm not sure that will work from C, however. What will work from C is just to use plain function pointers, e.g.
extern "C" {
using AdderFunction = int(int);
// old-style: typedef int(*AdderFunction)(int);
}
Edit: If you're using an API that gives you std::function
objects, you can use the std::function::target()
method to obtain the (C-callable) raw function pointer it refers to.
using AdderFunction = std::function<int(int)>;
extern "C" {
using CAdderFunction = int(int);
CAdderFunction makeCAdder(int amount)
{
return makeAdder(amount).target<CAdderFunction>();
}
}
Upvotes: 5