Reputation: 113
The code is as below and runs perfectly:
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout
xData = np.array([[5, 3, 7], [1, 2, 6], [8, 7, 6]], dtype=np.float32)
yTrainData = np.array([[1], [0], [1]], dtype=np.float32)
model = Sequential()
model.add(Dense(64, input_dim=3, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
model.fit(xData, yTrainData, epochs=10, batch_size=128, verbose=2)
xTestData = np.array([[2, 8, 1], [3, 1, 9]], dtype=np.float32)
resultAry = model.predict(xTestData)
print("Cal result: %s" % resultAry)
I can't work out the code in TensowFlow, something I've written is like this:
import tensorflow as tf
import numpy as np
xData = np.array([[5, 3, 7], [1, 2, 6], [8, 7, 6]], dtype=np.float32)
yTrainData = np.array([[1], [0], [1]], dtype=np.float32)
x = tf.placeholder(tf.float32)
yTrain = tf.placeholder(tf.float32)
w = tf.Variable(tf.ones([64]), dtype=tf.float32)
b = tf.Variable(tf.zeros([1]), dtype=tf.float32)
y = tf.nn.relu(w * x + b)
w1 = tf.Variable(tf.ones([3]), dtype=tf.float32)
b1 = tf.Variable(0, dtype=tf.float32)
y1 = tf.reduce_mean(tf.nn.sigmoid(w1 * y + b1))
loss = tf.abs(y1 - tf.reduce_mean(yTrain))
optimizer = tf.train.AdadeltaOptimizer(0.1)
train = optimizer.minimize(loss)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
for i in range(10):
for j in range(3):
result = sess.run([loss, y1, yTrain, x, w, b, train], feed_dict={x: xData[j], yTrain: yTrainData[j]})
if i % 10 == 0:
print("i: %d, j: %d, loss: %10.10f, y1: %f, yTrain: %s, x: %s" % (i, j, float(result[0]), float(result[1]), yTrainData[j], xData[j]))
result = sess.run([y1, loss], feed_dict={x: [1, 6, 0], yTrain: 0})
print(result)
But I will got the following error while running,
Traceback (most recent call last):
File "C:\Python36\lib\site-packages\tensorflow\python\client\session.py", line 1327, in _do_call
return fn(*args)
File "C:\Python36\lib\site-packages\tensorflow\python\client\session.py", line 1306, in _run_fn
status, run_metadata)
File "C:\Python36\lib\contextlib.py", line 88, in __exit__
next(self.gen)
File "C:\Python36\lib\site-packages\tensorflow\python\framework\errors_impl.py", line 466, in raise_exception_on_not_ok_status
pywrap_tensorflow.TF_GetCode(status))
tensorflow.python.framework.errors_impl.InvalidArgumentError: Incompatible shapes: [64] vs. [3]
[[Node: mul = Mul[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"](Variable/read, _arg_Placeholder_0_0)]]
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "testidc.py", line 36, in <module>
result = sess.run([loss, y1, yTrain, x, w, b, train], feed_dict={x: xData[j], yTrain: yTrainData[j]})
File "C:\Python36\lib\site-packages\tensorflow\python\client\session.py", line 895, in run
run_metadata_ptr)
File "C:\Python36\lib\site-packages\tensorflow\python\client\session.py", line 1124, in _run
feed_dict_tensor, options, run_metadata)
File "C:\Python36\lib\site-packages\tensorflow\python\client\session.py", line 1321, in _do_run
options, run_metadata)
File "C:\Python36\lib\site-packages\tensorflow\python\client\session.py", line 1340, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InvalidArgumentError: Incompatible shapes: [64] vs. [3]
[[Node: mul = Mul[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"](Variable/read, _arg_Placeholder_0_0)]]
Caused by op 'mul', defined at:
File "testidc.py", line 15, in <module>
y = tf.nn.relu(w * x + b)
File "C:\Python36\lib\site-packages\tensorflow\python\ops\variables.py", line 705, in _run_op
return getattr(ops.Tensor, operator)(a._AsTensor(), *args)
File "C:\Python36\lib\site-packages\tensorflow\python\ops\math_ops.py", line 865, in binary_op_wrapper
return func(x, y, name=name)
File "C:\Python36\lib\site-packages\tensorflow\python\ops\math_ops.py", line 1088, in _mul_dispatch
return gen_math_ops._mul(x, y, name=name)
File "C:\Python36\lib\site-packages\tensorflow\python\ops\gen_math_ops.py", line 1449, in _mul
result = _op_def_lib.apply_op("Mul", x=x, y=y, name=name)
File "C:\Python36\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 767, in apply_op
op_def=op_def)
File "C:\Python36\lib\site-packages\tensorflow\python\framework\ops.py", line 2630, in create_op
original_op=self._default_original_op, op_def=op_def)
File "C:\Python36\lib\site-packages\tensorflow\python\framework\ops.py", line 1204, in __init__
self._traceback = self._graph._extract_stack() # pylint: disable=protected-access
InvalidArgumentError (see above for traceback): Incompatible shapes: [64] vs. [3]
[[Node: mul = Mul[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"](Variable/read, _arg_Placeholder_0_0)]]
The main reason is the shape of W, must be the same as x in TensowFlow, but in Keras, the hidden Dense layer could have more nodes than the input(such as 64 in the example).
I need help for the equivalent TensorFlow code instead of the Keras one. Thanks.
Upvotes: 1
Views: 1371
Reputation: 1492
This is a couple of months old but it's worth noting that there is absolutely no reason to not use keras with tensorflow. It's even part of the tensorflow library now!
So if you want full control of your tensors but still want to use keras' layers, you can easily achieve that by using keras as-is:
x = tf.placeholder(tf.float32, [None, 1024])
y = keras.layers.Dense(512, activation='relu')(x)
For more on that, keras' creator made a pretty cool post about it.
Upvotes: 1
Reputation: 19123
This is an example that uses the tf.estimator.Estimator
framework:
import tensorflow as tf
import numpy as np
# The model
def model(features):
dense = tf.layers.dense(inputs=features['x'], units=64, activation=tf.nn.relu)
dropout = tf.layers.dropout(dense, 0.2)
logits = tf.layers.dense(inputs=dropout, units=1, activation=tf.nn.sigmoid)
return logits
# Stuff needed to use the tf.estimator.Estimator framework
def model_fn(features, labels, mode):
logits = model(features)
predictions = {
'classes': tf.argmax(input=logits, axis=1),
'probabilities': tf.nn.softmax(logits)
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
loss = tf.losses.softmax_cross_entropy(onehot_labels=labels, logits=logits)
# Configure the training op
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.RMSPropOptimizer(learning_rate=1e-4)
train_op = optimizer.minimize(loss, tf.train.get_or_create_global_step())
else:
train_op = None
accuracy = tf.metrics.accuracy(
tf.argmax(labels, axis=1), predictions['classes'])
metrics = {'accuracy': accuracy}
# Create a tensor named train_accuracy for logging purposes
tf.identity(accuracy[1], name='train_accuracy')
tf.summary.scalar('train_accuracy', accuracy[1])
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op,
eval_metric_ops=metrics)
# Setting up input for the model
def input_fn(mode, batch_size):
# function that processes your input and returns two tensors "samples" and "labels"
# that the estimator will use to fetch input batches.
# See https://www.tensorflow.org/get_started/input_fn for how to write this function.
return samples, labels
# Using the model
def main():
# Create the Estimator
classifier = tf.estimator.Estimator(
model_fn=model_fn, model_dir='some_dir')
# Train the model
# NOTE: I use this to make it compatible with your example, but you should
# defnitely set up your own input_fn above
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": np.array([[5, 3, 7], [1, 2, 6], [8, 7, 6]], dtype=np.float32)},
y=np.array([[1], [0], [1]]),
num_epochs=10,
batch_size=128,
shuffle=False)
classifier.train(
input_fn=train_input_fn,
steps=20000, # change as needed
)
# Predict on new data
predict_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": np.array([[5, 3, 7], [1, 2, 6], [8, 7, 6]], dtype=np.float32)},
num_epochs=1,
batch_size=1,
shuffle=False)
predictions_iterator = classifier.predict(
input_fn=predict_input_fn)
print('Predictions results:')
for pred in predictions_iterator:
print(pred)
There is quite bit going on here, so I'll try to explain the blocks one by one.
The model is defined as a composition of tf.layers
in a separate model
function. This is done to keep the actual model_fn
(which is required by the Estimator
framework) independent of the model architecture.
The function takes a features
parameter, which is the output of a call to input_fn
(see below). In this example, since we're using tf.estimator.inputs.numpy_input_fn
, features is a dictionary with item x:input_tensor
. We use the input tensor as input for our model graph.
model_fn
This function is required by the framework and is used to generate a specification for your Estimator
that is dependent on the mode
the estimato is being used for. Typically, an estimator used for prediction will have less operations than when it's used for training (you don't have the loss, optimizer, etc). This function takes care of adding all that is necessary to your model graph for the three possible modes of operation (prediction, evaluation, training).
Breaking it down to logical pieces, we have:
input_fn
This is where we provide the input to our estimator.
Have a look at Building Input Functions with tf.estimator for a guide on how your custom input_fn
should look like. For the example, we'll use the numpy_input_fn
function from the framework.
Note that usually one input_fn
handles all operation modes according to a mode
parameter. Since we're using numpy_input_fn
, we need two different instances of it for training and prediction to provide the data as needed.
main
Here we actually train and use the estimator.
Firstly, we get an Estimator
instance with the model_fn
we specified, then we call train()
and wait for the training to be over.
Once that is done, calling predict()
returns an iterable
that you can use to get the prediction results for all the samples in the dataset you're predicting.
Upvotes: 1