Reputation: 197
I am looking for the fastest way of determining if 2 (vertically or horizontally) adjacent elements have the same value.
Let's say I have a numpy array of size 4x4.
array([
[8, 7, 4, 3],
[8, 4, 0, 4],
[3, 2, 2, 1],
[9, 8, 7, 6]])
I want to be able to identify that there are two adjacent 8s in the first column and there are two adjacent 2s in the third row. I could hard code a check but that would be ugly and I want to know if there is a faster way.
All guidance is appreciated. Thank you.
Upvotes: 3
Views: 1025
Reputation: 221554
We would look for differentiation values along rows and columns for zeros
signalling repeated ones there. Thus, we could do -
(np.diff(a,axis=0) == 0).any() | (np.diff(a,axis=1) == 0).any()
Or with slicing
for performance boost -
(a[1:] == a[:-1]).any() | (a[:,1:] == a[:,:-1]).any()
So, (a[1:] == a[:-1]).any()
is the vertical adjacency, whereas the other one is for horizontal one.
n
adjacent ones (of same value) along rows or columns -from scipy.ndimage.filters import convolve1d as conv
def vert_horz_adj(a, n=1):
k = np.ones(n,dtype=int)
v = (conv((a[1:]==a[:-1]).astype(int),k,axis=0,mode='constant')>=n).any()
h = (conv((a[:,1:]==a[:,:-1]).astype(int),k,axis=1,mode='constant')>=n).any()
return v | h
Sample run -
In [413]: np.random.seed(0)
...: a = np.random.randint(11,99,(10,4))
...: a[[2,3,4,6,7,8],0] = 1
In [414]: a
Out[414]:
array([[55, 58, 75, 78],
[78, 20, 94, 32],
[ 1, 98, 81, 23],
[ 1, 76, 50, 98],
[ 1, 92, 48, 36],
[88, 83, 20, 31],
[ 1, 80, 90, 58],
[ 1, 93, 60, 40],
[ 1, 30, 25, 50],
[43, 76, 20, 68]])
In [415]: vert_horz_adj(a, n=1)
Out[415]: True # Because of first col
In [416]: vert_horz_adj(a, n=2)
Out[416]: True # Because of first col
In [417]: vert_horz_adj(a, n=3)
Out[417]: False
In [418]: a[-1] = 10
In [419]: vert_horz_adj(a, n=3)
Out[419]: True # Because of last row
Upvotes: 4
Reputation: 18628
if you want to locate the first occurence of each pair :
A=array([
[8, 7, 4, 3],
[8, 4, 0, 4],
[3, 2, 2, 1],
[9, 8, 7, 6]])
x=(A[1:]==A[:-1]).nonzero()
y=(A[:,1:]==A[:,:-1]).nonzero()
In [45]: x
Out[45]: (array([0], dtype=int64), array([0], dtype=int64))
In [47]: y
Out[47]: (array([2], dtype=int64), array([1], dtype=int64))
In [48]: A[x]
Out[48]: array([8])
In [49]: A[y]
Out[49]: array([2])
x
and y
give respectively the locations of the first 8 and the first 2.
Upvotes: 0
Reputation: 11424
You can find the coordinates of the pairs with the following code:
import numpy as np
a = np.array([
[8, 7, 4, 3],
[8, 4, 0, 4],
[3, 2, 2, 1],
[9, 8, 7, 6]])
vertical = np.where((a == np.roll(a, 1, 0))[1:-1])
print(vertical) # (0,0) is the coordinate of the first of the repeating 8's
horizontal = np.where((a == np.roll(a, 1, 1))[:, 1:-1])
print(horizontal) # (2,1) is the coordinate of the first of the repeating 2's
which returns
(array([0], dtype=int64), array([0], dtype=int64))
(array([2], dtype=int64), array([1], dtype=int64))
Upvotes: 1