Reputation: 71
I am trying to filter out a subset of data in the following code.
I want to filter those columns with FG='Y' if there is only one element in that group. Also, between those groups that have both combinations of 'N' and 'Y' in FG column, I will choose it if and only if the FG='Y' is submitted after 60 days of FG='N'.
from datetime import timedelta
import datetime as dt
from dateutil.parser import parse
import pandas as pd
import numpy as np
data={'Name':['A','A','A','B','B','B','C','D','D','D','E','E','E','F','G','G','G','H','H','H'],'FG':['Y','Y','Y','N','N','Y','Y','Y','Y','Y','Y','N','N','N','Y','N','N','Y','Y','N'],
'Program': ['Eval','Eval','Eval','IB','Eval','IB','PO','PO','Info','IB','Info','Info','Info','Ted', 'Info','Ted','Ted','PO','PO','PO'],
'Date':['2016/10/01','2017/10/01','2016/11/11','2017/10/01','2016/10/01','2017/10/02','2017/10/01','2017/10/01','2017/06/03',
'2017/10/01','2017/10/21','2017/10/21','2017/08/01','2017/10/10', '2017/10/21','2017/08/01','2017/10/10', '2017/04/01','2017/01/30','2017/01/01']}
df=pd.DataFrame(data=data,columns=['Name','FG','Program', 'Date'])
df['Date']=pd.to_datetime(df['Date']).dt.date
df=df.sort_values('Date', ascending=True).drop_duplicates(subset=['Name', 'FG','Program'], keep='last')
df['check']=df.groupby(['Name', 'Program']).Date.transform('min')
df['check']=df['check']+timedelta(60)
mask=df.groupby(['Name','Program']).apply(lambda x : ((x.FG=='Y') & (x.Date>= x.check)) if len(x.Date)>1 else x.FG=='Y')).values
X=df[mask]
The expected output should be
Name FG Program Date
A Y Eval 2017-10-01
C Y PO 2017-10-01
D Y Info 2017-06-03
D Y PO 2017-10-01
D Y IB 2017-10-01
G Y Info 2017-10-21
H Y PO 2017-04-01
It seems like my filter in the mask variable does not work. Also, any suggestion to compare the date for FG='N' to the FG='Y' would be greatly appreciated
Upvotes: 1
Views: 108
Reputation: 21264
You can get your desired result using groupby
and apply
, you don't need to create df.check
ahead of time:
def filterer(x):
y = x.FG.eq('Y')
n = x.FG.eq('N')
if 'N' in x.FG.values:
if x.loc[y, 'Date'].values > x.loc[n, 'Date'].values + timedelta(60):
return x.loc[y]
elif 'Y' in x.FG.values:
return x
(df.groupby(['Name','Program'])
.apply(filterer)
.sort_values(["Name","Date"])
.reset_index(drop=True)
)
Output:
Name FG Program Date
0 A Y Eval 2017-10-01
1 C Y PO 2017-10-01
2 D Y Info 2017-06-03
3 D Y IB 2017-10-01
4 D Y PO 2017-10-01
5 G Y Info 2017-10-21
6 H Y PO 2017-04-01
Upvotes: 2
Reputation: 323226
By using np.where
mask=df.groupby(['Name','Program']).\
apply(lambda x : np.where(len(x.Date)>1,(x.FG=='Y') & (x.Date>= x.check),x.FG=='Y')).\
apply(pd.Series).stack().values
df.sort_values(['Name','Program']).loc[mask]
Out[827]:
Name FG Program Date check
1 A Y Eval 2017-10-01 2017-11-30
6 C Y PO 2017-10-01 2017-11-30
9 D Y IB 2017-10-01 2017-11-30
8 D Y Info 2017-06-03 2017-08-02
7 D Y PO 2017-10-01 2017-11-30
14 G Y Info 2017-10-21 2017-12-20
17 H Y PO 2017-04-01 2017-03-02
Upvotes: 3