De La Brez
De La Brez

Reputation: 103

Pandas explode list of dictionaries into rows

Have this:

                                  items, name
0   { [{'a': 2, 'b': 1}, {'a': 4, 'b': 3}], this }
1   { [{'a': 2, 'b': 1}, {'a': 4, 'b': 3}], that }

But would like to have the list of dictionary objects exploded into (flattened?) into actual rows like this:

    a, b, name
0   { 2, 1, this}
1   { 4, 3, this}
0   { 2, 1, that}
1   { 4, 3, that}

Having been trying to use melt but with no luck, any ideas? suggestions?

Data to produce DataFrame:

data = {'items': [[{'a': 2, 'b': 1}, {'a': 4, 'b': 3}], [{'a': 2, 'b': 1}, {'a': 4, 'b': 3}]], 'name': ['this', 'that']}

Upvotes: 10

Views: 10619

Answers (6)

valentinmk
valentinmk

Reputation: 1021

More general approach for similar situations

  1. explode items to separate rows
  2. convert dict to pandas columns with pd.json_normalize
  3. join original df with json_normalize'ed columns and drop the original items column
In [1]: import pandas as pd

In [2]: data = {'items': [[{'a': 2, 'b': 1}, {'a': 4, 'b': 3}], [{'a': 2, 'b': 1}, {'a': 4, 'b': 3}]], 'name': ['this', 'that']}

In [3]: df = pd.DataFrame(data).explode('items')

In [4]: df
Out[4]: 
              items  name
0  {'a': 2, 'b': 1}  this
0  {'a': 4, 'b': 3}  this
1  {'a': 2, 'b': 1}  that
1  {'a': 4, 'b': 3}  that

In [5]: df = df.reset_index(drop=True)  # align source table and items

In [6]: df
Out[6]: 
              items  name
0  {'a': 2, 'b': 1}  this
1  {'a': 4, 'b': 3}  this
2  {'a': 2, 'b': 1}  that
3  {'a': 4, 'b': 3}  that

In [7]: pd.json_normalize(df['items']) # just to illustrate what is happen
Out[7]: 
   a  b
0  2  1
1  4  3
2  2  1
3  4  3

In [8]: df.join(
   ...:     pd.json_normalize(df['items']), # "explode" dict to separate columns
   ...:     rsuffix='_right' # just in case if you have overlapping column names
   ...: ).drop(columns=['items']) # delete original column
Out[8]: 
   name  a  b
0  this  2  1
0  this  2  1
1  that  4  3
1  that  4  3

Upvotes: 2

user7864386
user7864386

Reputation:

Another solution is to set_index with "name" and explode "items". Then cast the resulting Series to a DataFrame.

s = df.set_index('name')['items'].explode()
out = pd.DataFrame(s.tolist(), index=s.index).reset_index()

Output:

   name  a  b
0  this  2  1
1  this  4  3
2  that  2  1
3  that  4  3

It appears, set_index + explode + DataFrame is faster (at least for OP's data) than all the other options given in the other answers.

%timeit -n 1000 out = pd.concat(df['items'].apply(pd.DataFrame).tolist(), keys=df["name"]).reset_index()
%timeit -n 1000 ab = pd.DataFrame.from_dict(np.concatenate(df['items']).tolist()); lens = df['items'].str.len(); rest = df.drop('items', axis=1).iloc[df.index.repeat(lens)].reset_index(drop=True); out = ab.join(rest)
%timeit -n 1000 out = pd.concat([pd.DataFrame(df1.iloc[0]) for x,df1 in df.groupby('name')['items']],keys=df.name).reset_index().drop('level_1',axis=1)
%timeit -n 1000 s = df.set_index('name')['items'].explode(); out = pd.DataFrame(s.tolist(), index=s.index).reset_index()
2.5 ms ± 29.8 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
1.75 ms ± 12.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
3.82 ms ± 433 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
1.46 ms ± 68 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

Upvotes: 4

Andy Hayden
Andy Hayden

Reputation: 375475

Another way to use concat perhaps more cleanly:

In [11]: pd.concat(df.group.apply(pd.DataFrame).tolist(), keys=df["name"])
Out[11]:
        a  b
name
this 0  2  1
     1  4  3
that 0  2  1
     1  4  3

In [12]: pd.concat(df.group.apply(pd.DataFrame).tolist(), 
                        keys=df["name"]).reset_index(level="name")
Out[12]:
   name  a  b
0  this  2  1
1  this  4  3
0  that  2  1
1  that  4  3

Upvotes: 7

BENY
BENY

Reputation: 323226

pd.concat([pd.DataFrame(df1.iloc[0]) for x,df1 in df.groupby('name').group],keys=df.name)\
     .reset_index().drop('level_1',1)
Out[63]: 
   name  a  b
0  this  2  1
1  this  4  3
2  that  2  1
3  that  4  3

Data Input

df = pd.DataFrame({ "group":[[{'a': 2, 'b': 1}, {'a': 4, 'b': 3}],[{'a': 2, 'b': 1}, {'a': 4, 'b': 3}]],
                   "name": ['this', 'that']})

Upvotes: 3

Cero
Cero

Reputation: 1

tmp_list = list()
for index, row in a.iterrows():
    for list_item in row['items']:
        tmp_list.append(dict(list_item.items()+[('name', row['name'])]))
pd.DataFrame(tmp_list)

   a  b  name
0  2  1  this
1  4  3  this
2  2  1  that
3  4  3  that

Upvotes: 0

piRSquared
piRSquared

Reputation: 294258

ab = pd.DataFrame.from_dict(np.concatenate(df['items']).tolist())
lens = df['items'].str.len()
rest = df.drop('items', 1).iloc[df.index.repeat(lens)].reset_index(drop=True)
ab.join(rest)

   a  b  name
0  2  1  this
1  4  3  this
2  2  1  that
3  4  3  that

Upvotes: 3

Related Questions