Reputation: 908
I want to construct a np.array from another np.array using a conditional. For each value, if the condition is met, one operation has to be applied, otherwise another. The calculation I have written is ugly due to conversion to and back a list. Can it be improved in terms of speed, by not converting to a list?
THR = 1.0
THR_REZ = 1.0 / THR**2
def thresholded_function(x):
if x < THR:
return THR_REZ
else:
return 1.0 / x**2
rad2 = .....some_np_array.....
rez = np.array([threshold(r2) for r2 in rad2])
Upvotes: 0
Views: 167
Reputation: 221684
Use np.where
-
np.where(x < THR, THR_REZ, 1.0/x**2) # x is input array
Sample run -
In [267]: x = np.array([3,7,2,1,8])
In [268]: THR, THR_REZ = 5, 0
In [269]: np.where(x < THR, THR_REZ, 1.0/x**2)
Out[269]: array([ 0. , 0.02040816, 0. , 0. , 0.015625 ])
In [270]: def thresholded_function(x, THR, THR_REZ):
...: if x < THR:
...: return THR_REZ
...: else:
...: return 1.0 / x**2
In [272]: [thresholded_function(i,THR, THR_REZ) for i in x]
Out[272]: [0, 0.02040816326530612, 0, 0, 0.015625]
Upvotes: 1