Reputation: 1093
I have a dataframe with timezone aware index
>>> dfn.index
Out[1]:
DatetimeIndex(['2004-01-02 01:00:00+11:00', '2004-01-02 02:00:00+11:00',
'2004-01-02 03:00:00+11:00', '2004-01-02 04:00:00+11:00',
'2004-01-02 21:00:00+11:00', '2004-01-02 22:00:00+11:00'],
dtype='datetime64[ns]', freq='H', tz='Australia/Sydney')
I save it in csv, then read it as follows:
>>> dfn.to_csv('temp.csv')
>>> df= pd.read_csv('temp.csv', index_col=0 ,header=None )
>>> df.head()
Out[1]:
1
0
NaN 0.0000
2004-01-02 01:00:00+11:00 0.7519
2004-01-02 02:00:00+11:00 0.7520
2004-01-02 03:00:00+11:00 0.7515
2004-01-02 04:00:00+11:00 0.7502
The index is read as a string
>>> df.index[1]
Out[3]: '2004-01-02 01:00:00+11:00'
On converting to_datetime, it changes the time as it adds +11 to hours
>>> df.index = pd.to_datetime(df.index)
>>> df.index[1]
Out[6]: Timestamp('2004-01-01 14:00:00')
I can now subtract 11 hours from the index to fix it, but is there a better way to handle this?
I tried using the solution in answer here, but that slows down the code a lot.
Upvotes: 5
Views: 6417
Reputation: 862406
I think here is problem you need write and read header of file same way.
And for parse dates need parameter parse_dates
.
#write to file header
dfn.to_csv('temp.csv')
#no read header
df= pd.read_csv('temp.csv', index_col=0 ,header=None)
Solution1:
#no write header
dfn.to_csv('temp.csv', header=None)
#no read header
df= pd.read_csv('temp.csv', index_col=0 ,header=None, parse_dates=[0])
Solution2:
#write header
dfn.to_csv('temp.csv')
#read header
df= pd.read_csv('temp.csv', index_col=0, parse_dates=[0])
Unfortunately parse_date
convert dates to UTC
, so is necessary add timezones later:
df.index = df.index.tz_localize('UTC').tz_convert('Australia/Sydney')
print (df.index)
DatetimeIndex(['2004-01-02 01:00:00+11:00', '2004-01-02 02:00:00+11:00',
'2004-01-02 03:00:00+11:00', '2004-01-02 04:00:00+11:00',
'2004-01-02 05:00:00+11:00', '2004-01-02 06:00:00+11:00',
'2004-01-02 07:00:00+11:00', '2004-01-02 08:00:00+11:00',
'2004-01-02 09:00:00+11:00', '2004-01-02 10:00:00+11:00'],
dtype='datetime64[ns, Australia/Sydney]', name=0, freq=None)
Sample for test:
idx = pd.date_range('2004-01-02 01:00:00', periods=10, freq='H', tz='Australia/Sydney')
dfn = pd.DataFrame({'col':range(len(idx))}, index=idx)
print (dfn)
col
2004-01-02 01:00:00+11:00 0
2004-01-02 02:00:00+11:00 1
2004-01-02 03:00:00+11:00 2
2004-01-02 04:00:00+11:00 3
2004-01-02 05:00:00+11:00 4
2004-01-02 06:00:00+11:00 5
2004-01-02 07:00:00+11:00 6
2004-01-02 08:00:00+11:00 7
2004-01-02 09:00:00+11:00 8
2004-01-02 10:00:00+11:00 9
Upvotes: 6