Reputation: 11
I often have a function that returns a single value such as a maximum or integral. I then would like to iterate over another parameter. Here is a trivial example using a parabolic. I don't think its broadcasting since I only want the 1D array. In this case its maximums. A real world example is the maximum power point of a solar cell as a function of light intensity but the principle is the same as this example.
import numpy as np
x = np.linspace(-1,1) # sometimes this is read from file
parameters = np.array([1,12,3,5,6])
maximums = np.zeros_like(parameters)
for idx, parameter in enumerate(parameters):
y = -x**2 + parameter
maximums[idx] = np.max(y) # after I have the maximum I don't need the rest of the data.
print(maximums)
What is the best way to do this in Python/Numpy? I know one simplification is to make the function a def and then use np.vectorize but my understanding is it doesn't make the code any faster.
Upvotes: 1
Views: 155
Reputation: 221524
Extend one of those arrays to 2D
and then let broadcasting
do those outer additions in a vectorized way -
maximums = (-x**2 + parameters[:,None]).max(1).astype(parameters.dtype)
Alternatively, with the explicit use of the outer addition method -
np.add.outer(parameters, -x**2).max(1).astype(parameters.dtype)
Upvotes: 1