Reputation: 67
I am new to using Julia and have little experience with the language. I am trying to understand how multi-dimensional arrays work in it and how to access the array at the different dimensions. The documentation confuses me, so maybe someone here can explain it better.
I created an array (m = Array{Int64}(6,3)) and am trying to access the different parts of that array. Clearly I am understanding it wrong so any help in general about Arrays/Multi-Dimensional Arrays would help.
Thanks
Edit I am trying to read a file in that has the contents
58 129 10
58 129 7
25 56 10
24 125 25
24 125 15
13 41 10
0
The purpose of the project is to take these fractions (58/129) and round the fractions using farey sequence. The last number in the row is what both numbers need to be below. Currently, I am not looking for help on how to do the problem, just how to create a multidimensional array with all the numbers except the last row (0). My trouble is how to put the numbers into the array after I have created it.
So I want m[0][0] = 58, so on. I'm not sure how syntax works for this and the manual is confusing. Hopefully this is enough information.
Upvotes: 0
Views: 3559
Reputation: 31342
Julia's arrays are not lists-of-lists or arrays of pointers. They are a single container, with elements arranged in a rectangular shape. As such, you do not access successive dimensions with repeated indexing calls like m[j][i]
— instead you use one indexing call with multiple indices: m[i, j]
.
If you trim off that last 0
in your file, you can just use the built-in readdlm
to load that file into a matrix. I've copied those first six rows into my clipboard to make it a bit easier to follow here:
julia> str = clipboard()
"58 129 10\n58 129 7\n25 56 10\n24 125 25\n24 125 15\n13 41 10"
julia> readdlm(IOBuffer(str), Int) # or readdlm("path/to/trimmed/file", Int)
6×3 Array{Int64,2}:
58 129 10
58 129 7
25 56 10
24 125 25
24 125 15
13 41 10
That's not very helpful in teaching you how Julia's arrays work, though. Constructing an array like m = Array{Int64}(6,3)
creates an uninitialized matrix with 18 elements arranged in 6 rows and 3 columns. It's a bit easier to see how things work if we fill it with a sensible pattern:
julia> m .= [10,20,30,40,50,60] .+ [1 2 3]
6×3 Array{Int64,2}:
11 12 13
21 22 23
31 32 33
41 42 43
51 52 53
61 62 63
This has set up the values of the array to have the row number in their tens place and the column number in the ones place. Accessing m[r,c]
returns the value in m
at row r
and column c
.
julia> m[2,3] # second row, third column
23
Now, r
and c
don't have to be integers — they can also be vectors of integers to select multiple rows or columns:
julia> m[[2,3,4],[1,2]] # Selects rows 2, 3, and 4 across columns 1 and 2
3×2 Array{Int64,2}:
21 22
31 32
41 42
Of course ranges like 2:4
are just vectors themselves, so you can more easily and efficiently write that example as m[2:4, 1:2]
. A :
by itself is a shorthand for a vector of all the indices within the dimension it indexes into:
julia> m[1, :] # the first row of all columns
3-element Array{Int64,1}:
11
12
13
julia> m[:, 1] # all rows of the first column
6-element Array{Int64,1}:
11
21
31
41
51
61
Finally, note that Julia's Array
is column-major and arranged contiguously in memory. This means that if you just use one index, like m[2]
, you're just going to walk down that first column. As a special extension, we support what's commonly referred to as "linear indexing", where we allow that single index to span into the higher dimensions. So m[7]
accesses the 7th contiguous element, wrapping around into the first row of the second column:
julia> m[5],m[6],m[7],m[8]
(51, 61, 12, 22)
Upvotes: 3