Reputation: 1065
I am trying to fit an LSTM network to a sin function. Currently, as far as I understand Keras, my code does only predict the next value. According to this link: Many to one and many to many LSTM examples in Keras it is a many to one model. However, my goal is to implement a Many-to-many model. Basically, I want to be able to predict let's say 10 values, to a given time. When I am trying to use
return_sequences=True
(see line model.add(..)
), which is supposed to be the solution, the following error occurs:
ValueError: Error when checking target: expected lstm_8 to have 3 dimensions, but got array with shape (689, 1)
Unfortunately, I have absolutely no clue why this happens. Is there a general rule how the input shape needs to be when using return_sequences=True
? Furthermore what exactly would I need to change? Thanks for any help.
import pandas
import numpy as np
import matplotlib.pylab as plt
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import sklearn
from keras.models import Sequential
from keras.layers import Activation, LSTM
from keras import optimizers
from IPython.display import SVG
from keras.utils.vis_utils import model_to_dot
#generate sin function with noise
x = np.arange(0, 100, 0.1)
noise = np.random.uniform(-0.1, 0.1, size=(1000,))
Y = np.sin(x) + noise
# Perform feature scaling
scaler = MinMaxScaler()
Y = scaler.fit_transform(Y.reshape(-1, 1))
# split in train and test
train_size = int(len(Y) * 0.7)
test_size = len(Y) - train_size
train, test = Y[0:train_size,:], Y[train_size:len(Y),:]
def create_dataset(dataset, look_back=1):
dataX, dataY = [], []
for i in range(len(dataset)-look_back-1):
a = dataset[i:(i+look_back), 0]
dataX.append(a)
dataY.append(dataset[i + look_back, 0])
return np.array(dataX), np.array(dataY)
# reshape into X=t and Y=t+1
look_back = 10
X_train, y_train = create_dataset(train, look_back)
X_test, y_test = create_dataset(test, look_back)
# LSTM network expects the input data in form of [samples, time steps, features]
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))
np.set_printoptions(threshold=np.inf)
# compile model
model = Sequential()
model.add(LSTM(1, input_shape=(look_back, 1)))#, return_sequences=True)) <== uncomment this
model.compile(loss='mean_squared_error', optimizer='adam')
SVG(model_to_dot(model).create(prog='dot', format='svg'))
model.fit(X_train, y_train, validation_data=(X_test, y_test),
batch_size=10, epochs=10, verbose=2)
prediction = model.predict(X_test, batch_size=1, verbose=0)
prediction.reshape(-1)
#Transform back to original representation
Y = scaler.inverse_transform(Y)
prediction = scaler.inverse_transform(prediction)
plt.plot(np.arange(0,Y.shape[0]), Y)
plt.plot(np.arange(Y.shape[0] - X_test.shape[0] , Y.shape[0]), prediction, 'red')
plt.show()
error = mean_squared_error(y_test, prediction)
print(error)
Upvotes: 1
Views: 1666
Reputation: 83
Shouldn't this:
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))
be like this:
X_train = np.reshape((X_train.shape[0], X_train.shape[1], 1))
X_test = np.reshape((X_test.shape[0], X_test.shape[1], 1))
Can this be your problem? (1 years after xD)
Upvotes: 0
Reputation: 721
I have simulated the data as @DvirSamuel suggested, and provided code for a LSTM and FNN. Note that for the LSTM, network_lstm.add(layers.Dense(1, activation = None))
is required if return_sequences = True
is included in the previous layer.
## Simulate data.
np.random.seed(20180826)
Z = np.random.randint(0, 10, size = (11000, 1))
for i in range(10):
Z = np.concatenate((Z, (Z[:, -1].reshape(Z.shape[0], 1) + 1)), axis = 1)
X = Z[:, :-1]
Y = Z[:, 1:]
print(X.shape)
print(Y.shape)
## Training and validation data.
split = 10000
X_train = X[:split, :]
X_valid = X[split:, :]
Y_train = Y[:split, :]
Y_valid = Y[split:, :]
print(X_train.shape)
print(Y_train.shape)
print(X_valid.shape)
print(Y_valid.shape)
Code for a LSTM model:
## LSTM model.
X_lstm_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)
X_lstm_valid = X_valid.reshape(X_valid.shape[0], X_valid.shape[1], 1)
Y_lstm_train = Y_train.reshape(Y_train.shape[0], Y_train.shape[1], 1)
Y_lstm_valid = Y_valid.reshape(Y_valid.shape[0], Y_valid.shape[1], 1)
# Define model.
network_lstm = models.Sequential()
network_lstm.add(layers.LSTM(64, activation = 'relu', input_shape = (X_lstm_train.shape[1], 1),
return_sequences = True))
network_lstm.add(layers.Dense(1, activation = None))
network_lstm.summary()
# Compile model.
network_lstm.compile(optimizer = 'rmsprop', loss = 'mean_squared_error')
# Fit model.
history_lstm = network_lstm.fit(X_lstm_train, Y_lstm_train, epochs = 5, batch_size = 32, verbose = True,
validation_data = (X_lstm_valid, Y_lstm_valid))
## Extract loss over epochs and predict.
# Extract loss.
loss_lstm = history_lstm.history['loss']
val_loss_lstm = history_lstm.history['val_loss']
epochs_lstm = range(1, len(loss_lstm) + 1)
plt.plot(epochs_lstm, loss_lstm, 'black', label = 'Training Loss')
plt.plot(epochs_lstm, val_loss_lstm, 'red', label = 'Validation Loss')
plt.title('LSTM: Training and Validation Loss')
plt.legend()
plt.title('First in Sequence')
plt.scatter(Y_train[:, 0], network_lstm.predict(X_lstm_train)[:, 0], alpha = 0.1)
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.show()
plt.scatter(Y_valid[:, 0], network_lstm.predict(X_lstm_valid)[:, 0], alpha = 0.1)
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.show()
plt.title('Last in Sequence')
plt.scatter(Y_train[:, -1], network_lstm.predict(X_lstm_train)[:, -1], alpha = 0.1)
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.show()
plt.scatter(Y_valid[:, -1], network_lstm.predict(X_lstm_valid)[:, -1], alpha = 0.1)
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.show()
Code for a FNN model:
## FNN model.
# Define model.
network_fnn = models.Sequential()
network_fnn.add(layers.Dense(64, activation = 'relu', input_shape = (X_train.shape[1],)))
network_fnn.add(Dense(10, activation = None))
network_fnn.summary()
# Compile model.
network_fnn.compile(optimizer = 'rmsprop', loss = 'mean_squared_error')
# Fit model.
history_fnn = network_fnn.fit(X_train, Y_train, epochs = 5, batch_size = 32, verbose = True,
validation_data = (X_valid, Y_valid))
## Extract loss over epochs.
# Extract loss.
loss_fnn = history_fnn.history['loss']
val_loss_fnn = history_fnn.history['val_loss']
epochs_fnn = range(1, len(loss_fnn) + 1)
plt.plot(epochs_fnn, loss_fnn, 'black', label = 'Training Loss')
plt.plot(epochs_fnn, val_loss_fnn, 'red', label = 'Validation Loss')
plt.title('FNN: Training and Validation Loss')
plt.legend()
plt.title('First in Sequence')
plt.scatter(Y_train[:, 1], network_fnn.predict(X_train)[:, 1], alpha = 0.1)
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.show()
plt.scatter(Y_valid[:, 1], network_fnn.predict(X_valid)[:, 1], alpha = 0.1)
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.show()
plt.title('Last in Sequence')
plt.scatter(Y_train[:, -1], network_fnn.predict(X_train)[:, -1], alpha = 0.1)
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.show()
plt.scatter(Y_valid[:, -1], network_fnn.predict(X_valid)[:, -1], alpha = 0.1)
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.show()
Upvotes: 1
Reputation: 1168
The problem is not the input, but the output. The error says: "Error when checking target", target = y_train and y_test.
Because your lstm returns a sequence (return_sequences=True) the output dimention will be: (n_batch,lookback,1).
You can verify it by using model.summary()
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
lstm_1 (LSTM) (None, 10, 1) 12
=================================================================
Total params: 12
Trainable params: 12
Non-trainable params: 0
_________________________________________________________________
You will need to change your create_dataset function so each ground truth will be shaped (lookback,1).
Something you might want to do:
for each seqeuence x in the train set,its y will be the next proceedings sequence.
For example, lets say we would like to learn something easier, the seqeuence will be the previous number plus 1 --> 1,2,3,4,5,6,7,8,9,10.
For loockback=4:
X_train[0] = 1,2,3,4
y_train[0] will be: 2,3,4,5
X_train[1] = 2,3,4,5
y_train[1] will be: 3,4,5,6
and so on...
Upvotes: 3