Reputation: 49
I am learning TensorFlow from the example at: MNIST Tutorial - Julia.jl
unlike their tutorial, I am using my own custom images(32 X 32 (RGB) ) format asimular to cifar-10. Each row in the csv is 3073 columns the last one being the label. And I have 300 rows out of which I used array slicing to select the first 240 rows for training and the remaining for testing. So in a nut shell I have 4 arrays: images_train = 240 X 3072 labels_train = 240 X 1 images_test = 60 X 3072 labels_test = 60 X 1 Below is the error: THE ERROR
The code:
using TensorFlow
using Distributions
include("loader.jl")
session = Session(Graph())
function weight_variable(shape)
initial = map(Float32, rand(Normal(0, .001), shape...))
return Variable(initial)
end
function bias_variable(shape)
initial = fill(Float32(.1), shape...)
return Variable(initial)
end
function conv2d(x, W)
nn.conv2d(x, W, [1, 1, 1, 1], "SAME")
end
function max_pool_2x2(x)
nn.max_pool(x, [1, 2, 2, 1], [1, 2, 2, 1], "SAME")
end
x = placeholder(Float32)
y_ = placeholder(Float32)
W_conv1 = weight_variable([5, 5, 3, 32])
b_conv1 = bias_variable([32])
x_image = reshape(x, [-1, 32, 32, 3])
h_conv1 = nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = reshape(h_pool2, [-1, 7*7*64])
h_fc1 = nn.relu(h_pool2_flat * W_fc1 + b_fc1)
keep_prob = placeholder(Float32)
h_fc1_drop = nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([1024, 9])
b_fc2 = bias_variable([9])
y_conv = nn.softmax(h_fc1_drop * W_fc2 + b_fc2)
cross_entropy = reduce_mean(-reduce_sum((y_ .* log(y_conv)), reduction_indices=[2]))
train_step = train.minimize(train.AdamOptimizer(1e-4), cross_entropy)
correct_prediction = indmax(y_conv, 2) .== indmax(y_, 2)
accuracy = reduce_mean(cast(correct_prediction, Float32))
run(session, initialize_all_variables())
for i in 1:40
images_train,labels_train = next_batch(16) # randomly generate batches from training dataset
if i%4 == 1
train_accuracy = run(session, accuracy, Dict(x=>images_train, y_=>labels_train, keep_prob=>1.0))
info("step $i, training accuracy $train_accuracy")
end
run(session, train_step, Dict(x=>images_train, y_=>labels_train, keep_prob=>.5))
end
images_test, labels_test = load_test_set() # 60 X 3072, 60 X 1 Arrays
test_accuracy = run(session, accuracy, Dict(x=>images_test, y_=>labels_test, keep_prob=>1.0))
info("test accuracy $test_accuracy")
Thank you
Upvotes: 1
Views: 91
Reputation: 2604
There is no argument reduction_indices
in reduce_sum
you should change it to axis
, like:
cross_entropy = reduce_mean(-reduce_sum((y_ .* log(y_conv)), axis=[2]))
Upvotes: 1