Reputation: 25
I am trying to get the minimized weight that's closer to average weight combined. My current problem is using the SLSQP solver I cannot find the right weight that meet the target 100%. Is there another solver I could use to solve my problem? Or any math suggestions. Please help.
My math right now is
**min(∑|x-mean(x)|)**
**s.t.** Aw-b=0, w>=0
**bound** 0.2'<'x<0.5
Data
nRow# Variable1 Variable2 Variable3
1 3582.00 233445193.00 559090945.00
2 3394.00 217344811.00 496500751.00
3 3356.00 237746918.00 493639029.00
4 3256.00 219204892.00 461547877.00
5 3415.00 225272825.00 501057960.00
6 3505.00 242819442.00 505073223.00
7 3442.00 215258725.00 490458632.00
8 3381.00 227681178.00 503102998.00
9 3392.00 215189377.00 487026744.00
w1 w2 w3
Target 8531.00 429386951.00 1079115532.00
Question: Find the minimized weight that are closer to average
Python Code:
A = np.array([[3582.000000, 3394.000000, 3356.000000, 3256.000000, 3415.000000,
3505.000000, 3442.000000, 3381.000000, 3392.000000],
[233445193.000000, 217344811.000000, 237746918.000000,
219204892.000000, 225272825.000000, 242819442.000000,
215258725.000000, 227681178.000000, 215189377.000000],
[559090945.000000, 496500751.000000, 493639029.000000,
461547877.000000, 501057960.000000, 505073223.000000,
490458632.000000, 503102998.000000, 487026744.000000]])
b = np.array([8531, 1079115532, 429386951])
n=9
def fsolveMin(A,b,n):
# The constraints: Ax = b
def cons(x):
return A.dot(x)-b
cons = ({'type':'eq','fun':cons},
{'type':'ineq','fun':lambda x:x[0]})
# The minimizing constraints: the total absolute difference between the coefficients
def fn(x):
return np.sum(np.abs(x-np.mean(x)))
# Initialize the coefficients randomly
z0 = abs(np.random.randn(len(A[1,:])))
# Set up bound
# bnds = [(0, None)]*n
# Solve the problem
sol = minimize(fn, x0 = z0, constraints = cons, method = 'SLSQP', options={'disp': True})
#expected 35%
print(sol.x)
print(A.dot(sol.x))
#print(fn(sol.x))
print(str(fsolveMin(A,b,n))+"\n\n")
Upvotes: 1
Views: 1608
Reputation: 33542
To give you an idea how bloated this will get with low-level tools like scipy's linprog as we have to mimic their standard-form:
The basic idea is to:
x-mean
)Now this example works.
For your data you have to be careful in regards to the bounds. Make sure, the problem stays feasible. The problem itself is pretty unstable as hard-constraints are used for Ax=b
; usually you would minimize some norm / least-squares here (no LP anymore; QP/SOCP) and add this error to the objective)!
It might be needed to switch the solver from method='simplex'
to method='interior-point'
at some point (only available since scipy 1.0).
Alternative:
Using cvxpy, formulation is much easier (both variants mentioned) and you get quite a good solver (ECOS) for free.
Code:
import numpy as np
import scipy.optimize as spo
np.set_printoptions(linewidth=120)
np.random.seed(1)
""" Create random data """
M, N = 2, 3
A = np.random.random(size=(M,N))
x_hidden = np.random.random(size=N)
b = A.dot(x_hidden) # target
n = N
print('Original A')
print(A)
print('hidden x: ', x_hidden)
print('target: ', b)
""" Optimize as LP """
def solve(A, b, n):
print('Reformulation')
am, an = A.shape
# Introduce aux-vars
# 1: y = mean
# n: z = x - mean
# n: abs(z)
n_plus_aux_vars = 3*n + 1
# Equality constraint: y = mean
eq_mean_A = np.zeros(n_plus_aux_vars)
eq_mean_A[:n] = 1. / n
eq_mean_A[n] = -1.
eq_mean_b = np.array([0])
print('y = mean A:')
print(eq_mean_A)
print('y = mean b:')
print(eq_mean_b)
# Equality constraints: Ax = b
eq_A = np.zeros((am, n_plus_aux_vars))
eq_A[:, :n] = A[:, :n]
eq_b = np.copy(b)
print('Ax=b A:')
print(eq_A)
print('Ax=b b:')
print(eq_b)
# Equality constraints: z = x - mean
eq_mean_A_z = np.hstack([-np.eye(n), np.ones((n, 1)), + np.eye(n), np.zeros((n, n))])
eq_mean_b_z = np.zeros(n)
print('z = x - mean A:')
print(eq_mean_A_z)
print('z = x - mean b:')
print(eq_mean_b_z)
# Inequality constraints: absolute values -> x <= x' ; -x <= x'
ineq_abs_0_A = np.hstack([np.zeros((n, n)), np.zeros((n, 1)), np.eye(n), -np.eye(n)])
ineq_abs_0_b = np.zeros(n)
ineq_abs_1_A = np.hstack([np.zeros((n, n)), np.zeros((n, 1)), -np.eye(n), -np.eye(n)])
ineq_abs_1_b = np.zeros(n)
# Bounds
# REMARK: Do not touch anything besides the first bounds-row!
bounds = [(0., 1.) for i in range(n)] + \
[(None, None)] + \
[(None, None) for i in range(n)] + \
[(0, None) for i in range(n)]
# Objective
c = np.zeros(n_plus_aux_vars)
c[-n:] = 1
A_eq = np.vstack((eq_mean_A, eq_A, eq_mean_A_z))
b_eq = np.hstack([eq_mean_b, eq_b, eq_mean_b_z])
A_ineq = np.vstack((ineq_abs_0_A, ineq_abs_1_A))
b_ineq = np.hstack([ineq_abs_0_b, ineq_abs_1_b])
print('solve...')
result = spo.linprog(c, A_ineq, b_ineq, A_eq, b_eq, bounds=bounds, method='simplex')
print(result)
x = result.x[:n]
print('x: ', x)
print('residual Ax-b: ', A.dot(x) - b)
print('mean: ', result.x[n])
print('x - mean: ', x - result.x[n])
print('l1-norm(x - mean) / objective: ', np.linalg.norm(x - result.x[n], 1))
solve(A, b, n)
Output:
Original A
[[ 4.17022005e-01 7.20324493e-01 1.14374817e-04]
[ 3.02332573e-01 1.46755891e-01 9.23385948e-02]]
hidden x: [ 0.18626021 0.34556073 0.39676747]
target: [ 0.32663584 0.14366255]
Reformulation
y = mean A:
[ 0.33333333 0.33333333 0.33333333 -1. 0. 0. 0. 0. 0. 0. ]
y = mean b:
[0]
Ax=b A:
[[ 4.17022005e-01 7.20324493e-01 1.14374817e-04 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00]
[ 3.02332573e-01 1.46755891e-01 9.23385948e-02 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00]]
Ax=b b:
[ 0.32663584 0.14366255]
z = x - mean A:
[[-1. -0. -0. 1. 1. 0. 0. 0. 0. 0.]
[-0. -1. -0. 1. 0. 1. 0. 0. 0. 0.]
[-0. -0. -1. 1. 0. 0. 1. 0. 0. 0.]]
z = x - mean b:
[ 0. 0. 0.]
solve...
fun: 0.078779576294411263
message: 'Optimization terminated successfully.'
nit: 10
slack: array([ 0.07877958, 0. , 0. , 0. , 0.07877958, 0. , 0.76273076, 0.68395118,
0.72334097])
status: 0
success: True
x: array([ 0.23726924, 0.31604882, 0.27665903, 0.27665903, -0.03938979, 0.03938979, 0. , 0.03938979,
0.03938979, 0. ])
x: [ 0.23726924 0.31604882 0.27665903]
residual Ax-b: [ 5.55111512e-17 0.00000000e+00]
mean: 0.276659030053
x - mean: [-0.03938979 0.03938979 0. ]
l1-norm(x - mean) / objective: 0.0787795762944
Now for your original data, things get tough!
You need to:
Example:
A = np.array([[3582.000000, 3394.000000, 3356.000000, 3256.000000, 3415.000000,
3505.000000, 3442.000000, 3381.000000, 3392.000000],
[233445193.000000, 217344811.000000, 237746918.000000,
219204892.000000, 225272825.000000, 242819442.000000,
215258725.000000, 227681178.000000, 215189377.000000],
[559090945.000000, 496500751.000000, 493639029.000000,
461547877.000000, 501057960.000000, 505073223.000000,
490458632.000000, 503102998.000000, 487026744.000000]])
b = np.array([8531., 1079115532., 429386951.])
A /= 10000. # scaling
b /= 10000. # scaling
bounds = [(-50., 50.) for i in range(n)] + \
...
result = spo.linprog(c, A_ineq, b_ineq, A_eq, b_eq, bounds=bounds, method='interior-point')
Output:
solve...
con: array([ 3.98410760e-09, 1.18067724e-08, 8.12879938e-04, 1.75969041e-03, -3.93853838e-09, -3.96305566e-09,
-4.10043555e-09, -3.94957667e-09, -3.88362764e-09, -3.89452381e-09, -3.95134592e-09, -3.92182287e-09,
-3.85762178e-09])
fun: 52.742900697626389
message: 'Optimization terminated successfully.'
nit: 8
slack: array([ 5.13245265e+01, 1.89309145e-08, 1.83429094e-09, 4.28687782e-09, 1.03726911e-08, 2.77000474e-09,
1.41837413e+00, 6.75769654e-09, 8.65285462e-10, 2.78501844e-09, 3.09591539e-09, 5.27429006e+01,
1.30944103e-08, 5.32994799e-09, 3.15369669e-08, 2.51943821e-09, 7.54848797e-09, 3.22510447e-09])
status: 0
success: True
x: array([ -2.51938304e+01, 4.68432810e-01, 2.68398831e+01, 4.68432822e-01, 4.68432815e-01, 4.68432832e-01,
-2.40754247e-01, 4.68432818e-01, 4.68432819e-01, 4.68432822e-01, -2.56622633e+01, -7.91749954e-09,
2.63714503e+01, 4.40376624e-09, -2.52137156e-09, 1.43834811e-08, -7.09187065e-01, 3.95395716e-10,
1.17990950e-09, 2.56622633e+01, 1.10134149e-08, 2.63714503e+01, 8.69064406e-09, 7.85131955e-09,
1.71534858e-08, 7.09187068e-01, 7.15309226e-09, 2.04519496e-09])
x: [-25.19383044 0.46843281 26.83988313 0.46843282 0.46843282 0.46843283 -0.24075425 0.46843282 0.46843282]
residual Ax-b: [ -1.18067724e-08 -8.12879938e-04 -1.75969041e-03]
mean: 0.468432821891
x - mean: [ -2.56622633e+01 -1.18805552e-08 2.63714503e+01 4.54189575e-10 -6.40499920e-09 1.04889573e-08 -7.09187069e-01
-3.52642715e-09 -2.67771227e-09]
l1-norm(x - mean) / objective: 52.7429006758
Edit
Here a SOCP-based least-squares (soft-constrained) approach, which i would recommend in terms of numerical-stability! This approach can and should be tuned for whatever you need. It's implemented using the already mentioned cvxpy modelling-tool using the ECOS solver.
The basic idea:
min(l1-norm(x - mean(x)) st. Ax=b
min(l2-norm(Ax-b) + c * l1-norm(x - mean(x)))
c
is the nonnegative trade-off parameterc
: Ax=b
is more importantc
: x - mean(x)
is more importantExample code & output for your data and bounds of -50, 50
and c=1e-3
:
import numpy as np
import cvxpy as cvx
""" DATA """
A = np.array([[3582.000000, 3394.000000, 3356.000000, 3256.000000, 3415.000000,
3505.000000, 3442.000000, 3381.000000, 3392.000000],
[233445193.000000, 217344811.000000, 237746918.000000,
219204892.000000, 225272825.000000, 242819442.000000,
215258725.000000, 227681178.000000, 215189377.000000],
[559090945.000000, 496500751.000000, 493639029.000000,
461547877.000000, 501057960.000000, 505073223.000000,
490458632.000000, 503102998.000000, 487026744.000000]])
b = np.array([8531., 1079115532., 429386951.])
n = 9
# A /= 10000. scaling would be a good idea
# b /= 10000. """
""" SOCP-based least-squares approach """
def solve(A, b, n, c=1e-1):
x = cvx.Variable(n)
y = cvx.Variable(1) # mean
lower_bounds = np.zeros(n) - 50 # -50
upper_bounds = np.zeros(n) + 50 # 50
constraints = []
constraints.append(x >= lower_bounds)
constraints.append(x <= upper_bounds)
constraints.append(y == cvx.sum_entries(x) / n)
objective = cvx.Minimize(cvx.norm(A*x-b, 2) + c * cvx.norm(x - y, 1))
problem = cvx.Problem(objective, constraints)
problem.solve(solver=cvx.ECOS, verbose=True)
print('Objective: ', problem.value)
print('x: ', x.T.value)
print('mean: ', y.value)
print('Ax-b: ')
print((A*x - b).value)
print('x - mean: ', (x - y).T.value)
solve(A, b, n)
Output:
ECOS 2.0.4 - (C) embotech GmbH, Zurich Switzerland, 2012-15. Web: www.embotech.com/ECOS
It pcost dcost gap pres dres k/t mu step sigma IR | BT
0 +2.637e-17 -1.550e+06 +7e+08 1e-01 2e-04 1e+00 2e+07 --- --- 1 1 - | - -
1 -8.613e+04 -1.014e+05 +8e+06 1e-03 2e-06 2e+03 2e+05 0.9890 1e-04 2 1 1 | 0 0
2 -1.287e+03 -1.464e+03 +1e+05 1e-05 9e-08 4e+01 3e+03 0.9872 1e-04 3 1 1 | 0 0
3 +1.794e+02 +1.900e+02 +2e+03 2e-07 1e-07 1e+01 5e+01 0.9890 5e-03 5 3 4 | 0 0
4 -1.388e+00 -6.826e-01 +1e+02 1e-08 7e-08 9e-01 3e+00 0.9458 4e-03 7 6 6 | 0 0
5 +5.491e+00 +5.683e+00 +1e+01 1e-09 8e-09 2e-01 3e-01 0.9617 6e-02 1 1 1 | 0 0
6 +6.480e+00 +6.505e+00 +1e+00 2e-10 5e-10 3e-02 4e-02 0.8928 2e-02 1 1 1 | 0 0
7 +6.746e+00 +6.746e+00 +2e-02 3e-12 5e-10 5e-04 6e-04 0.9890 5e-03 1 0 0 | 0 0
8 +6.759e+00 +6.759e+00 +3e-04 2e-12 2e-10 6e-06 7e-06 0.9890 1e-04 1 0 0 | 0 0
9 +6.759e+00 +6.759e+00 +3e-06 2e-13 2e-10 6e-08 8e-08 0.9890 1e-04 2 0 0 | 0 0
10 +6.758e+00 +6.758e+00 +3e-08 5e-14 2e-10 7e-10 9e-10 0.9890 1e-04 1 0 0 | 0 0
OPTIMAL (within feastol=2.0e-10, reltol=4.7e-09, abstol=3.2e-08).
Runtime: 0.002901 seconds.
Objective: 6.757722879805085
x: [[-18.09169736 -5.55768047 11.12130645 11.48355878 -1.13982006
12.4290884 -3.00165819 -1.05158589 -2.4468432 ]]
mean: 0.416074272576
Ax-b:
[[ 2.17051777e-03]
[ 1.90734863e-06]
[ -5.72204590e-06]]
x - mean: [[-18.50777164 -5.97375474 10.70523218 11.0674845 -1.55589434
12.01301413 -3.41773246 -1.46766016 -2.86291747]]
This approach will always output a feasible solution (for our task) and you can then decide on the observed residual if it works for you.
As you observed, a lower-bound of 0 is deadly, in all formulations (look at the magnitude difference in your data!).
Here a lower-bound of 0 will get you a solution with some high residual-error.
E.g.:
c=1e-7
0 / 15
Output:
Objective: 785913288.2410747
x: [[ -5.57966858e-08 -4.74997454e-08 1.56066068e+00 1.68021234e-07
-3.55602958e-08 1.75340641e-06 -4.69609562e-08 -3.10216680e-08
-4.39482554e-08]]
mean: 0.173406926909
Ax-b:
[[ -3.29341696e+03]
[ -7.08072860e+08]
[ 3.41016903e+08]]
x - mean: [[-0.17340698 -0.17340697 1.38725375 -0.17340676 -0.17340696 -0.17340517
-0.17340697 -0.17340696 -0.17340697]]
Upvotes: 3
Reputation: 16797
First introduce a free variable mu with the constraint:
mu = sum(i, x(i))/n
Then introduce non-negative variables y(i)
with:
-y(i) <= x(i) - mu <= y(i)
Now you can minimize
min sum(i,y(i))
This is now a straight LP (linear objective and linear constraints) and can be solved with any LP solver.
Upvotes: 0