Reputation: 149
My goal: I wish to drop rows who have NaN in specific columns. I will allow NaN to exist on some columns but not others. English Example: If value of 'detail_age' in a row is NaN, I want to remove that row.
Here is a view of my data:
import pandas as pd
df = pd.read_csv('allDeaths.csv', index_col=0, nrows=3, engine='python')
print(df.shape)
print(list(df))
Which outputs:
(3,15)
['education_1989_revision', 'education_2003_revision',
'education_reporting_flag', 'sex', 'detail_age', 'marital_status',
'current_data_year', 'injury_at_work', 'manner_of_death', 'activity_code',
'place_of_injury_for_causes_w00_y34_except_y06_and_y07_', '358_cause_recode',
'113_cause_recode', '39_cause_recode', 'race']
When I attempt to remove rows who's columns value is NaN with the following:
df.dropna(subset=[2,3,4,5,6,7,8,9,11,12,13,14], axis=1, inplace=True, how='any')
I get the following error:
Traceback (most recent call last):
File "clean.py", line 10, in <module>
df.dropna(subset=[2,3,4,5,6,7,8,9,11,12,13,14], axis=1, inplace=True, how='any')
File "/usr/local/lib/python3.4/dist-packages/pandas/core/frame.py", line 3052, in dropna
raise KeyError(list(np.compress(check, subset)))
KeyError: [3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14]
Which is weird because this works:
df.dropna(subset=[2], axis=1, inplace=True, how='any')
But not this:
df.dropna(subset=[5], axis=1, inplace=True, how='any')
So there must be something wrong with certain columns or the values in those columns. Here is a peek at my data with df.head(3):
Upvotes: 4
Views: 15282
Reputation: 210852
Demo:
In [360]: df
Out[360]:
A B C D
0 1.0 2.0 NaN 4
1 5.0 NaN 7.0 8
2 NaN 10.0 11.0 12
3 13.0 14.0 15.0 16
In [362]: df = df.dropna(subset=df.columns[[1,2]], how='any')
In [363]: df
Out[363]:
A B C D
2 NaN 10.0 11.0 12
3 13.0 14.0 15.0 16
PS of course you can specify column names instead:
In [370]: df.dropna(subset=['B','C'], how='any')
Out[370]:
A B C D
2 NaN 10.0 11.0 12
3 13.0 14.0 15.0 16
Upvotes: 6