Reputation: 422
Consider I have 2D Tensor, index_in_batch * diag_ele
.
How can I get a 3D Tensor index_in_batch * Matrix
(who is a diagonal matrix, construct by drag_ele)?
The torch.diag()
construct diagonal matrix only when input is 1D, and return diagonal element when input is 2D.
Upvotes: 9
Views: 5966
Reputation: 101
Use torch.diag_embed
:
>>> a = torch.randn(2, 3)
>>> torch.diag_embed(a)
tensor([[[ 1.5410, 0.0000, 0.0000],
[ 0.0000, -0.2934, 0.0000],
[ 0.0000, 0.0000, -2.1788]],
[[ 0.5684, 0.0000, 0.0000],
[ 0.0000, -1.0845, 0.0000],
[ 0.0000, 0.0000, -1.3986]]])
Upvotes: 6
Reputation: 422
The solution for auto backward by wrapping in Variable.
import torch
a = torch.rand(2, 3)
print(a)
b = Variable(torch.eye(a.size(1)))
c = a.unsqueeze(2).expand(*a.size(), degree_inv.size(1))
b_expand = b.unsqueeze(0).expand(c.size(0), *b.size())
d = torch.mul(c.double(), b_expand.double())
print(d)
Upvotes: 0
Reputation: 37711
import torch
a = torch.rand(2, 3)
print(a)
b = torch.eye(a.size(1))
c = a.unsqueeze(2).expand(*a.size(), a.size(1))
d = c * b
print(d)
Output
0.5938 0.5769 0.0555
0.9629 0.5343 0.2576
[torch.FloatTensor of size 2x3]
(0 ,.,.) =
0.5938 0.0000 0.0000
0.0000 0.5769 0.0000
0.0000 0.0000 0.0555
(1 ,.,.) =
0.9629 0.0000 0.0000
0.0000 0.5343 0.0000
0.0000 0.0000 0.2576
[torch.FloatTensor of size 2x3x3]
Upvotes: 10