Reputation: 21
R version: 3.4.2
I'm using rugarch and mgarch to spec and fit model with DCC to my data. The model is generated successfully, however I'm unable to generate the plots. Here's a snippet of my code:
library(rugarch)
library(rmgarch)
da=read.table("d-msft3dx0113.txt",header=T)
MSFT.ret = da[,3]
GSPC.ret = da[,6]
MSFT.GSPC.ret = cbind(MSFT.ret,GSPC.ret)
garch11.spec = ugarchspec(mean.model = list(armaOrder = c(0,0)),
variance.model = list(garchOrder = c(1,1),
model = "sGARCH"),
distribution.model = "norm")
dcc.garch11.spec = dccspec(uspec = multispec( replicate(2, garch11.spec) ),
dccOrder = c(1,1),
distribution = "mvnorm")
dcc.fit = dccfit(dcc.garch11.spec, data = MSFT.GSPC.ret)
dcc.fcst = dccforecast(dcc.fit, n.ahead=100)
plot(dcc.fcst)
When I call for plot, I get this error:
plot(dcc.fcst)
Make a plot selection (or 0 to exit):
Selection: 1
Error in int_abline(a = a, b = b, h = h, v = v, untf = untf, ...) :
plot.new has not been called yet
I then give it a new plot area:
plot.new()
plot(dcc.fcst)
Which gives me this unhelpful plot:
Upvotes: 1
Views: 532
Reputation: 51
I have the same question, too. I don't know why plot(dcc.fic)
cannot work. So I do it manually to extract the correlation and covariance. rcov
and rcor
are two functions to extract what we need.
plot(rcov(dcc.fit)[1,2,], type = "l", col = "blue",
main = "Conditional Covariance", xlab = "Time",
ylab = "Covariance")
plot(rcor(dcc.fit)[1,2,], type = "l", col = "purple",
main = "Conditional Correlation", xlab = "Time",
ylab = "Correlation")
Upvotes: 1