Reputation:
I have a dataframe in which under the column "component_id", I have component_ids repeating several times. Here is what the df looks like:
In [82]: df.head()
Out[82]:
index molregno chembl_id assay_id tid tid component_id
0 0 942606 CHEMBL1518722 688422 103668 103668 4891
1 0 942606 CHEMBL1518722 688422 103668 103668 4891
2 0 942606 CHEMBL1518722 688721 78 78 286
3 0 942606 CHEMBL1518722 688721 78 78 286
4 0 942606 CHEMBL1518722 688779 103657 103657 5140
component_synonym
0 LMN1
1 LMNA
2 LGR3
3 TSHR
4 MAPT
As can be seen, the same component_id can be linked to various component_synonyms(essentially the same gene, but different names). I wanted to find out the frequency of each gene as I want to find out the top 20 most frequently hit genes and therefore, I performed a value_counts on the column "component_id". I get something like this.
In [84]: df.component_id.value_counts()
Out[84]:
5432 804
3947 402
5147 312
3 304
2693 294
75 282
Name: component_id, dtype: int64
Is there a way for me to order the entire dataframe according to the component_id that is present the most number of times? And also, is it possible for my dataframe to contain only the first occurrence of each component_id?
Any advice would be greatly appreciated!
Upvotes: 0
Views: 56
Reputation: 30605
I think you can make use of count to sort the rows and then drop the count column i.e
df['count'] = df.groupby('component_id')['component_id'].transform('count')
df_sorted = df.sort_values(by='count',ascending=False).drop('count',1)
Upvotes: 1