Reputation: 688
I have a data frame displaying a set of conditions, for example:
B = data.frame(col1 = 1:10, col2 = 11:20 )
e.g., the first row says that when col1 = 1, col2 = 11. I also have another data frame with the numbers that should met these conditions, for example:
A = data.frame(col1 = c(1:11,1:11), col2 = c(11:21,11:21), col3 = 101:122)
I would like to return the sum of the values in col3
in matrix A
for all rows that meat the conditions in B. For example, using the first row in B this value is:
sum(A$col3[which(A$col1 == B$col1[1] & A$col2 == B$col2[1])])
#[1] 213
that is the sum of the entries in col3
in the 1st and 12th row of A
. I need to find a vector with all these sums for all rows of matrix A
. I know how to do this with a loop, however in my data matrices A
and B
are very large and have many conditions, so I was wondering whether there is a way to do the same thing without the loop. Thank you.
Upvotes: 3
Views: 3916
Reputation: 50678
Solution in base R
# Sum identical rows
A.summed <- aggregate(col3 ~ col1 + col2, data = A, sum);
# Select col1 col2 combinations that are also present in B
A.summed.sub <- subset(A.summed, paste(col1, col2) %in% paste(B$col1, B$col2));
# col1 col2 col3
#1 1 11 213
#2 2 12 215
#3 3 13 217
#4 4 14 219
#5 5 15 221
#6 6 16 223
#7 7 17 225
#8 8 18 227
#9 9 19 229
#10 10 20 231
Or the same as a one-liner
A.summed.sub <- subset(aggregate(col3 ~ col1 + col2, data = A, sum), paste(col1, col2) %in% paste(B$col1, B$col2));
# Add summed col3 to dataframe B by matching col1 col2 combinations
B$col3 <- A.summed[match(paste(B$col1, B$col2), paste(A.summed$col1, A.summed$col2)), "col3"];
B;
# col1 col2 col3
#1 1 11 213
#2 2 12 215
#3 3 13 217
#4 4 14 219
#5 5 15 221
#6 6 16 223
#7 7 17 225
#8 8 18 227
#9 9 19 229
#10 10 20 231
Upvotes: 6
Reputation: 887173
We can do a join on
using data.table
library(data.table(
setDT(A)[B, .(col3 = sum(col3)), on = .(col1, col2), by = .EACHI]
# col1 col2 col3
# 1: 1 11 213
# 2: 2 12 215
# 3: 3 13 217
# 4: 4 14 219
# 5: 5 15 221
# 6: 6 16 223
# 7: 7 17 225
# 8: 8 18 227
# 9: 9 19 229
#10: 10 20 231
Upvotes: 3
Reputation: 39154
A solution using dplyr
. A2
is the final output. The idea is grouping the value in col1
and col2
and calculate the sum for col3
. semi_join
is to filter the data frame by matching values based on col1
and col2
in B
.
library(dplyr)
A2 <- A %>%
group_by(col1, col2) %>%
summarise(col3 = sum(col3)) %>%
semi_join(B, by = c("col1", "col2")) %>%
ungroup()
A2
# # A tibble: 10 x 3
# col1 col2 col3
# <int> <int> <int>
# 1 1 11 213
# 2 2 12 215
# 3 3 13 217
# 4 4 14 219
# 5 5 15 221
# 6 6 16 223
# 7 7 17 225
# 8 8 18 227
# 9 9 19 229
# 10 10 20 231
Upvotes: 3