Reputation: 4511
My input is 299,299,3
My graphics card is 1070 (8 gigs of ram)
Other Specs: Python 3.6, Keras 2.xx, Tensorflow-backend(1.4), Windows 7
Even batch size of 1 isn't working.
I feel like my card should handle a batch of size one --
Here is my code:
def full_model():
#model layers
input_img = Input(shape=(299, 299, 3))
tower_1 = Conv2D(64, (1, 1,), padding='same', activation='relu')(input_img)
tower_1 = Conv2D(64, (3, 3), padding='same', activation='relu')(tower_1)
tower_2 = Conv2D(64, (1, 1), padding='same', activation='relu')(input_img)
tower_2 = Conv2D(64, (5, 5), padding='same', activation='relu')(tower_2)
concatenated_layer = keras.layers.concatenate([tower_1, tower_2], axis=3)
bottleneck = MaxPooling2D((2, 2), strides=(2, 2), padding='same')(concatenated_layer)
flatten = Flatten()(bottleneck)
dense_1 = Dense(500, activation = 'relu')(flatten)
predictions = Dense(12, activation = 'softmax')(dense_1)
model = Model(inputs= input_img, output = predictions)
SGD =keras.optimizers.SGD(lr=0.1, momentum=0.0, decay=0.0, nesterov=False)
model.compile(optimizer=SGD,
loss='categorical_crossentropy',
metrics=['accuracy'])
return model
hdf5_path =r'C:\Users\Moondra\Desktop\Keras Applications\training.hdf5'
model = full_model()
def run_model( hdf5_path,
epochs = 10,
steps_per_epoch =8,
classes =12,
batch_size =1, model= model ):
for i in range(epochs):
batches = loading_hdf5_files.load_batches(batch_size =1,
hdf5_path=hdf5_path ,
classes = classes)
for i in range(steps_per_epoch):
x,y = next(batches)
#plt.imshow(x[0])
#plt.show()
x = (x/255).astype('float32')
print(x.shape)
data =model.train_on_batch(x,y)
print('loss : {:.5}, accuracy : {:.2%}'.format(*data))
return model
I can't seem to handle even a batch of size one.
Here is the last part of the error:
ResourceExhaustedError (see above for traceback): OOM when allocating tensor of shape [] and type float
[[Node: conv2d_4/random_uniform/sub = Const[dtype=DT_FLOAT, value=Tensor<type: float shape: [] values: 0.0866025388>, _device="/job:localhost/replica:0/task:0/device:GPU:0"]()]]
Upvotes: 1
Views: 904
Reputation: 4511
It turns out I have way too many parameters.
After running print(model.summary())
, I had a billion plus parameters.
I increased size of MaxPooling
and no more problems.
Upvotes: 1