Reputation: 3782
I have the following DataFrame in Spark 2.2.0 and Scala 2.11.8.
+----------+-------------------------------+
|item | other_items |
+----------+-------------------------------+
| 111 |[[444,1.0],[333,0.5],[666,0.4]]|
| 222 |[[444,1.0],[333,0.5]] |
| 333 |[] |
| 444 |[[111,2.0],[555,0.5],[777,0.2]]|
I want to get the following DataFrame:
+----------+-------------+
|item | other_items |
+----------+-------------+
| 111 | 444 |
| 222 | 444 |
| 444 | 111 |
So, basically, I need to extract the first item
from other_items
for each row. Also, I need to ignore those rows that have empty array []
in other_products
.
How can I do it?
I tried this approach, but it does not give me an expected result.
result = df.withColumn("other_items",$"other_items"(0))
The printScheme
gives the following output:
|-- item: string (nullable = true)
|-- other_items: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- _1: string (nullable = true)
| | |-- _2: double (nullable = true)
Upvotes: 4
Views: 413
Reputation: 11
Like this:
val df = Seq(
("111", Seq(("111", 1.0), ("333", 0.5), ("666", 0.4))), ("333", Seq())
).toDF("item", "other_items")
df.select($"item", $"other_items"(0)("_1").alias("other_items"))
.na.drop(Seq("other_items")).show
Where first apply
($"other_items"(0)
) selects the first element of the array, the second apply
(_("_1")
) selects
_1
field, and na.drop
removes nulls
introduced by empty array.
+----+-----------+
|item|other_items|
+----+-----------+
| 111| 111|
+----+-----------+
Upvotes: 1