Reputation: 109
I training vgg-19 net to classfy cifar10, after training one time, just one, the vgg-net returns nan
.
0 [[ 4.45161677e+09 2.87961518e+10 4.20765041e+10 ..., -2.33432433e+10
1.83500431e+10 -1.12923648e+10]
[ 1.18354002e+10 3.38799473e+10 5.86873242e+10 ..., -4.18343895e+10
2.79392338e+10 -1.61746637e+10]
[ 1.26074880e+09 2.22301839e+10 5.25488333e+10 ..., -2.92738212e+10
2.51925299e+10 -1.48290714e+10]
...,
[ 1.05694116e+10 2.16351908e+10 5.02961357e+10 ..., -3.12492278e+10
2.42959094e+10 -1.26112993e+10]
[ 4.72429568e+09 2.75032003e+10 5.14044682e+10 ..., -3.51395635e+10
2.18048840e+10 -1.46147287e+10]
[ 2.97774285e+09 1.89559747e+10 4.06387917e+10 ..., -2.35828470e+10
1.96148122e+10 -9.55916698e+09]]
1 [[ nan nan nan ..., nan nan nan]
[ nan nan nan ..., nan nan nan]
[ nan nan nan ..., nan nan nan]
...,
[ nan nan nan ..., nan nan nan]
[ nan nan nan ..., nan nan nan]
[ nan nan nan ..., nan nan nan]]
I use tf.train.GradientDescentOptimizer
to training vgg net, active function was relu, tf.random_normal
to init weight and use tf.nn.xw_plus_b
as fully connection layer. So i want to know, why vgg-net return nan
, after training.
Upvotes: 0
Views: 361