Reputation: 23
I've been trying to visualize QR decomposition in a step by step fashion, but I'm not getting expected results. I'm new to numpy so it'd be nice if any expert eye could spot what I might be missing:
import numpy as np
from scipy import linalg
A = np.array([[12, -51, 4],
[6, 167, -68],
[-4, 24, -41]])
#Givens
v = np.array([12, 6])
vnorm = np.linalg.norm(v)
W_12 = np.array([[v[0]/vnorm, v[1]/vnorm, 0],
[-v[1]/vnorm, v[0]/vnorm, 0],
[0, 0, 1]])
W_12 * A #this should return a matrix such that [1,0] = 0
#gram-schmidt
A[:,0]
v = np.linalg.norm(A[:,0]) * np.array([1, 0, 0])
u = (A[:,0] - v)
u = u / np.linalg.norm(u)
W1 = np.eye(3) - 2 * np.outer(u, u.transpose())
W1 * A #this matrix's first column should look like [a, 0, 0]
any help clarifying the fact that this intermediate results don't show the properties that they are supposed to will be greatly received
Upvotes: 2
Views: 799
Reputation: 6430
NumPy is designed to work with homogeneous multi-dimensional arrays, it is not specifically a linear algebra package. So by design, the *
operator is element-wise multiplication, not the matrix product.
If you want to get the matrix product, there are a few ways:
You can create np.matrix
objects, rather than np.ndarray
objects, for which the *
operator is the matrix product.
You can also use the @
operator, as in W_12 @ A
, which is the matrix product.
Or you can use np.dot(W_12, A)
or W_12.dot(A)
, which computes the dot product.
Any one of these, using the data you give, returns the following for Givens rotation:
>>> np.dot(W_12 A)[1, 0]
-2.2204460492503131e-16
And this for the Gram-Schmidt step:
>>> (W1.dot(A))[:, 0]
array([ 1.40000000e+01, -4.44089210e-16, 4.44089210e-16])
Upvotes: 1