Reputation: 26870
I'd like to format following numbers into the numbers next to them with java:
1000 to 1k
5821 to 5.8k
10500 to 10k
101800 to 101k
2000000 to 2m
7800000 to 7.8m
92150000 to 92m
123200000 to 123m
The number on the right will be long or integer the number on the left will be string. How should I approach this. I already did little algorithm for this but I thought there might be already something invented out there that does nicer job at it and doesn't require additional testing if I start dealing with billions and trillions :)
Additional Requirements:
Upvotes: 192
Views: 84963
Reputation: 201
fun getKLCrValue(input: Long):String{
return if(input.toString().length<4){
input.toString()
}else if(input.toString().length<5)
( ""+getExactValue(input.toString()[0] +"."+ input.toString()[1]) +"K")
else if(input.toString().length<6)
(""+getExactValue(""+input.toString().subSequence(0, 2) +"."+ input.toString()[2]) +"K")
else if(input.toString().length<7)
(""+ getExactValue( input.toString()[0] +"."+input.toString().subSequence(1, 3))+"L")
else if(input.toString().length<8)
(""+ getExactValue( ""+input.toString().subSequence(0, 2)+"."+input.toString().subSequence(2,4))+"L")
else if(input.toString().length<9)
(""+ getExactValue( input.toString()[0] +"."+input.toString().subSequence(1,3))+"Cr")
else
(""+ getExactValue( ""+input.toString().subSequence(0, input.toString().length-7)+"."+input.toString().subSequence( input.toString().length-7, input.toString().length-5))+"cr")
}
private fun getExactValue(value: String): String {
return value.replace(".00", "")
}
You can just call getKLCrValue(1234) and you will get desired output
Output-->
1 -> 1
10 -> 10
12 -> 12
100 -> 100
123 -> 123
1000 -> 1K
1234 -> 1.2K
10000 -> 10K
12345 -> 12.3K
100000 -> 1L
123456 -> 1.23L
1000000 -> 10L
1234567 -> 12.34L
10000000 -> 1cr
12345678 -> 1.23cr
100000000 -> 10cr
123456789 -> 12.34cr
1000000000 -> 100cr
1234567890 -> 123.45cr
10000000000 -> 1000cr
11111111111 -> 1111.11cr
Upvotes: 0
Reputation: 125
Set the divisor according to the the input number: 1000, 100000, 1000000, 1000000000 etc...
check the whole part(first part without fraction) of the number if its size is 1 then cast the input to long + String. if the size is >= 2 then divide the input and use DecimalFormat to show fractional part as desired.
you can use // .setRoundingMode(RoundingMode.DOWN) to deal with rounding
public static String format(long num) {
String suffix = "", result;
double divisor = 0;
DecimalFormat df = new DecimalFormat("##");
DecimalFormat ds = new DecimalFormat("##.#");
// ds.setRoundingMode(RoundingMode.DOWN);
if ( num >= 1000 && num < 1000000 ) {
divisor = 1000;
suffix = "K";
} else if ( num >= 1000000 && num < 1000000000 ) {
divisor = 1000000;
suffix = "M";
} else if (num >= 1000000000) {
divisor = 1000000000;
suffix = "B";
} else {
System.out.print("The number is Too big > T or TOO small < K");
}
int numlengt = df.format(num / divisor).length();
if (numlengt >= 2) {
result = (long) (num / divisor) + suffix;
} else {
result = ds.format(num / divisor) + suffix;
}
return result;
}
Upvotes: 1
Reputation: 139
There is a solution on the Maven Central
<dependency>
<groupId>com.github.bogdanovmn.humanreadablevalues</groupId>
<artifactId>human-readable-values</artifactId>
<version>1.0.1</version>
</dependency>
You can just get values for amount of bytes or seconds. Also you can create you own factorization class.
Docs https://github.com/bogdanovmn/java-human-readable-values
Seconds example
assertEquals(
"2h 46m 40s",
new SecondsValue(10000).fullString()
);
assertEquals(
"2.8h",
new SecondsValue(10000).shortString()
);
Bytes example
assertEquals(
"9K 784b",
new BytesValue(10000).fullString()
);
assertEquals(
"9.8K",
new BytesValue(10000).shortString()
);
Upvotes: 1
Reputation: 571
Here is a another simple solution for your problem. let say
String abbr="M,K,T,B";
double yvalue=some random number; String string ="#.##" //decimal places whatever you want
public String format(Double yvalue, String string,String abbr) {
DecimalFormat df = new DecimalFormat(getnumberformatpattern(string));
if (yvalue < 0) return "-" + format(-yvalue,string,abbr);
double finalvalue= yvalue;
String newnumber="";
if (abbr.indexOf("K")>0){
finalvalue= (yvalue / 1e3);
newnumber=df.format(finalvalue) +'K';
}
if (abbr.indexOf("M")>0 ){
if(yvalue>=1e6){
finalvalue= (yvalue / 1e6);
newnumber=df.format(finalvalue) +'M';
};
}
if (abbr.indexOf("B")>0 )
{
if((newnumber.indexOf("M")<0) || yvalue>=1e9){
finalvalue= (yvalue / 1e9);
newnumber=df.format(finalvalue) +'B'; }
}
if (abbr.indexOf("T")>0 ){
if((newnumber.indexOf("B")<0) || yvalue>=1e12){
finalvalue= (yvalue / 1e12);
newnumber=df.format(finalvalue) +'T'; }
}
return newnumber;
}
Upvotes: 0
Reputation: 32046
With Java-12 +, you can use NumberFormat.getCompactNumberInstance
to format the numbers. You can create a NumberFormat
first as
NumberFormat fmt = NumberFormat.getCompactNumberInstance(Locale.US, NumberFormat.Style.SHORT);
and then use it to format
:
fmt.format(1000) $5 ==> "1K" fmt.format(10000000) $9 ==> "10M" fmt.format(1000000000) $11 ==> "1B"
Upvotes: 28
Reputation: 345
public class NumberToReadableWordFormat {
public static void main(String[] args) {
Integer[] numbers = new Integer[]{1000, 5821, 10500, 101800, 2000000, 7800000, 92150000, 123200000, 9999999,999};
for(int n : numbers) {
System.out.println(n + " => " + coolFormat(n));
}
}
private static String[] c = new String[]{"K", "L", "Cr"};
private static String coolFormat(int n) {
int size = String.valueOf(n).length();
if (size>=4 && size<6) {
int value = (int) Math.pow(10, 1);
double d = (double) Math.round(n/1000.0 * value) / value;
return (double) Math.round(n/1000.0 * value) / value+" "+c[0];
} else if(size>5 && size<8) {
int value = (int) Math.pow(10, 1);
return (double) Math.round(n/100000.0 * value) / value+" "+c[1];
} else if(size>=8) {
int value = (int) Math.pow(10, 1);
return (double) Math.round(n/10000000.0 * value) / value+" "+c[2];
} else {
return n+"";
}
}
}
Output:
1000 => 1.0 K
5821 => 5.8 K
10500 => 10.5 K
101800 => 1.0 L
2000000 => 20.0 L
7800000 => 78.0 L
92150000 => 9.2 Cr
123200000 => 12.3 Cr
9999999 => 100.0 L
999 => 999
Upvotes: 0
Reputation: 61
this is my code. clean and simple .
public static String getRoughNumber(long value) {
if (value <= 999) {
return String.valueOf(value);
}
final String[] units = new String[]{"", "K", "M", "B", "P"};
int digitGroups = (int) (Math.log10(value) / Math.log10(1000));
return new DecimalFormat("#,##0.#").format(value / Math.pow(1000, digitGroups)) + "" + units[digitGroups];
}
Upvotes: 6
Reputation: 61019
My function for convert big number to small number (with 2 digits). You can change the number of digits by change #.##
in DecimalFormat
public String formatValue(float value) {
String arr[] = {"", "K", "M", "B", "T", "P", "E"};
int index = 0;
while ((value / 1000) >= 1) {
value = value / 1000;
index++;
}
DecimalFormat decimalFormat = new DecimalFormat("#.##");
return String.format("%s %s", decimalFormat.format(value), arr[index]);
}
Testing
System.out.println(formatValue(100)); // 100
System.out.println(formatValue(1000)); // 1 K
System.out.println(formatValue(10345)); // 10.35 K
System.out.println(formatValue(10012)); // 10.01 K
System.out.println(formatValue(123456)); // 123.46 K
System.out.println(formatValue(4384324)); // 4.38 M
System.out.println(formatValue(10000000)); // 10 M
System.out.println(formatValue(Long.MAX_VALUE)); // 9.22 E
Hope it help
Upvotes: 19
Reputation: 882716
The following code shows how you can do this with easy expansion in mind.
The "magic" lies mostly in the makeDecimal
function which, for the correct values passed in, guarantees you will never have more than four characters in the output.
It first extracts the whole and tenths portions for a given divisor so, for example, 12,345,678
with a divisor of 1,000,000
will give a whole
value of 12
and a tenths
value of 3
.
From that, it can decide whether it outputs just the whole part or both the whole and tenths part, using the rules:
The code for that follows:
static private String makeDecimal(long val, long div, String sfx) {
val = val / (div / 10);
long whole = val / 10;
long tenths = val % 10;
if ((tenths == 0) || (whole >= 10))
return String.format("%d%s", whole, sfx);
return String.format("%d.%d%s", whole, tenths, sfx);
}
Then, it's a simple matter of calling that helper function with the correct values, including some constants to make life easier for the developer:
static final long THOU = 1000L;
static final long MILL = 1000000L;
static final long BILL = 1000000000L;
static final long TRIL = 1000000000000L;
static final long QUAD = 1000000000000000L;
static final long QUIN = 1000000000000000000L;
static private String Xlat(long val) {
if (val < THOU) return Long.toString(val);
if (val < MILL) return makeDecimal(val, THOU, "k");
if (val < BILL) return makeDecimal(val, MILL, "m");
if (val < TRIL) return makeDecimal(val, BILL, "b");
if (val < QUAD) return makeDecimal(val, TRIL, "t");
if (val < QUIN) return makeDecimal(val, QUAD, "q");
return makeDecimal(val, QUIN, "u");
}
The fact that the makeDecimal
function does the grunt work means that expanding beyond 999,999,999
is just a matter of adding an extra line to Xlat
, so easy that I've done it for you.
The final return
in Xlat
doesn't need a conditional since the largest value you can hold in a 64-bit signed long is only about 9.2 quintillion.
But if, by some bizarre requirement, Oracle decides to add a 128-bit longer
type or a 1024-bit damn_long
type, you'll be ready for it :-)
And, finally, a little test harness you can use for validating the functionality.
public static void main(String[] args) {
long vals[] = {
999L, 1000L, 5821L, 10500L, 101800L, 2000000L,
7800000L, 92150000L, 123200000L, 999999999L,
1000000000L, 1100000000L, 999999999999L,
1000000000000L, 999999999999999L,
1000000000000000L, 9223372036854775807L
};
for (long val: vals)
System.out.println ("" + val + " -> " + Xlat(val));
}
}
You can see from the output that it gives you what you need:
999 -> 999
1000 -> 1k
5821 -> 5.8k
10500 -> 10k
101800 -> 101k
2000000 -> 2m
7800000 -> 7.8m
92150000 -> 92m
123200000 -> 123m
999999999 -> 999m
1000000000 -> 1b
1100000000 -> 1.1b
999999999999 -> 999b
1000000000000 -> 1t
999999999999999 -> 999t
1000000000000000 -> 1q
9223372036854775807 -> 9.2u
And, as an aside, be aware that passing in a negative number to this function will result in a string too long for your requirements, since it follows the
< THOU
path). I figured that was okay since you only mention non-negative values in the question.
Upvotes: 7
Reputation: 647
try this :
public String Format(Integer number){
String[] suffix = new String[]{"k","m","b","t"};
int size = (number.intValue() != 0) ? (int) Math.log10(number) : 0;
if (size >= 3){
while (size % 3 != 0) {
size = size - 1;
}
}
double notation = Math.pow(10, size);
String result = (size >= 3) ? + (Math.round((number / notation) * 100) / 100.0d)+suffix[(size/3) - 1] : + number + "";
return result
}
Upvotes: 1
Reputation: 81
For anyone that wants to round. This is a great, easy to read solution, that takes advantage of the Java.Lang.Math library
public static String formatNumberExample(Number number) {
char[] suffix = {' ', 'k', 'M', 'B', 'T', 'P', 'E'};
long numValue = number.longValue();
int value = (int) Math.floor(Math.log10(numValue));
int base = value / 3;
if (value >= 3 && base < suffix.length) {
return new DecimalFormat("~#0.0").format(numValue / Math.pow(10, base * 3)) + suffix[base];
} else {
return new DecimalFormat("#,##0").format(numValue);
}
}
Upvotes: 8
Reputation: 11123
Here's a short implementation without recursion and just a very small loop. Doesn't work with negative numbers but supports all positive long
s up to Long.MAX_VALUE
:
private static final char[] SUFFIXES = {'k', 'm', 'g', 't', 'p', 'e' };
public static String format(long number) {
if(number < 1000) {
// No need to format this
return String.valueOf(number);
}
// Convert to a string
final String string = String.valueOf(number);
// The suffix we're using, 1-based
final int magnitude = (string.length() - 1) / 3;
// The number of digits we must show before the prefix
final int digits = (string.length() - 1) % 3 + 1;
// Build the string
char[] value = new char[4];
for(int i = 0; i < digits; i++) {
value[i] = string.charAt(i);
}
int valueLength = digits;
// Can and should we add a decimal point and an additional number?
if(digits == 1 && string.charAt(1) != '0') {
value[valueLength++] = '.';
value[valueLength++] = string.charAt(1);
}
value[valueLength++] = SUFFIXES[magnitude - 1];
return new String(value, 0, valueLength);
}
Outputs:
1k
5.8k
10k
101k
2m
7.8m
92m
123m
9.2e (this isLong.MAX_VALUE
)
I also did some really simple benchmarking (formatting 10 million random longs) and it's considerably faster than Elijah's implementation and slightly faster than assylias' implementation.
Mine: 1137.028 ms
Elijah's: 2664.396 ms
assylias': 1373.473 ms
Upvotes: 9
Reputation: 4510
This code snippet just deadly simple, and clean code, and totally works:
private static char[] c = new char[]{'K', 'M', 'B', 'T'};
private String formatK(double n, int iteration) {
if (n < 1000) {
// print 999 or 999K
if (iteration <= 0) {
return String.valueOf((long) n);
} else {
return String.format("%d%s", Math.round(n), c[iteration-1]);
}
} else if (n < 10000) {
// Print 9.9K
return String.format("%.1f%s", n/1000, c[iteration]);
} else {
// Increase 1 iteration
return formatK(Math.round(n/1000), iteration+1);
}
}
Upvotes: 1
Reputation: 328913
Here is a solution that works for any long value and that I find quite readable (the core logic is done in the bottom three lines of the format
method).
It leverages TreeMap
to find the appropriate suffix. It is surprisingly more efficient than a previous solution I wrote that was using arrays and was more difficult to read.
private static final NavigableMap<Long, String> suffixes = new TreeMap<> ();
static {
suffixes.put(1_000L, "k");
suffixes.put(1_000_000L, "M");
suffixes.put(1_000_000_000L, "G");
suffixes.put(1_000_000_000_000L, "T");
suffixes.put(1_000_000_000_000_000L, "P");
suffixes.put(1_000_000_000_000_000_000L, "E");
}
public static String format(long value) {
//Long.MIN_VALUE == -Long.MIN_VALUE so we need an adjustment here
if (value == Long.MIN_VALUE) return format(Long.MIN_VALUE + 1);
if (value < 0) return "-" + format(-value);
if (value < 1000) return Long.toString(value); //deal with easy case
Entry<Long, String> e = suffixes.floorEntry(value);
Long divideBy = e.getKey();
String suffix = e.getValue();
long truncated = value / (divideBy / 10); //the number part of the output times 10
boolean hasDecimal = truncated < 100 && (truncated / 10d) != (truncated / 10);
return hasDecimal ? (truncated / 10d) + suffix : (truncated / 10) + suffix;
}
public static void main(String args[]) {
long[] numbers = {0, 5, 999, 1_000, -5_821, 10_500, -101_800, 2_000_000, -7_800_000, 92_150_000, 123_200_000, 9_999_999, 999_999_999_999_999_999L, 1_230_000_000_000_000L, Long.MIN_VALUE, Long.MAX_VALUE};
String[] expected = {"0", "5", "999", "1k", "-5.8k", "10k", "-101k", "2M", "-7.8M", "92M", "123M", "9.9M", "999P", "1.2P", "-9.2E", "9.2E"};
for (int i = 0; i < numbers.length; i++) {
long n = numbers[i];
String formatted = format(n);
System.out.println(n + " => " + formatted);
if (!formatted.equals(expected[i])) throw new AssertionError("Expected: " + expected[i] + " but found: " + formatted);
}
}
Upvotes: 187
Reputation: 4958
Staying true to my comment that I'd value readability above performance, here's a version where it should be clear what's happening (assuming you've used BigDecimal
s before) without excessive commenting (I believe in self-documenting code), without worrying about performance (since I can't picture a scenario where you'd want to do this so many millions of times that performance even becomes a consideration).
This version:
BigDecimal
s for precision and to avoid rounding issuesHALF_UP
as in the testsREQUIRED_PRECISION
)enum
to define the thresholds, i.e. could easily be adjusted to use KB/MB/GB/TB instead of k/m/b/t, etc., and could of course be extended beyond TRILLION
if requiredThreshold.java:
import java.math.BigDecimal;
public enum Threshold {
TRILLION("1000000000000", 12, 't', null),
BILLION("1000000000", 9, 'b', TRILLION),
MILLION("1000000", 6, 'm', BILLION),
THOUSAND("1000", 3, 'k', MILLION),
ZERO("0", 0, null, THOUSAND);
private BigDecimal value;
private int zeroes;
protected Character suffix;
private Threshold higherThreshold;
private Threshold(String aValueString, int aNumberOfZeroes, Character aSuffix,
Threshold aThreshold) {
value = new BigDecimal(aValueString);
zeroes = aNumberOfZeroes;
suffix = aSuffix;
higherThreshold = aThreshold;
}
public static Threshold thresholdFor(long aValue) {
return thresholdFor(new BigDecimal(aValue));
}
public static Threshold thresholdFor(BigDecimal aValue) {
for (Threshold eachThreshold : Threshold.values()) {
if (eachThreshold.value.compareTo(aValue) <= 0) {
return eachThreshold;
}
}
return TRILLION; // shouldn't be needed, but you might have to extend the enum
}
public int getNumberOfZeroes() {
return zeroes;
}
public String getSuffix() {
return suffix == null ? "" : "" + suffix;
}
public Threshold getHigherThreshold() {
return higherThreshold;
}
}
NumberShortener.java:
import java.math.BigDecimal;
import java.math.RoundingMode;
public class NumberShortener {
public static final int REQUIRED_PRECISION = 2;
public static BigDecimal toPrecisionWithoutLoss(BigDecimal aBigDecimal,
int aPrecision, RoundingMode aMode) {
int previousScale = aBigDecimal.scale();
int previousPrecision = aBigDecimal.precision();
int newPrecision = Math.max(previousPrecision - previousScale, aPrecision);
return aBigDecimal.setScale(previousScale + newPrecision - previousPrecision,
aMode);
}
private static BigDecimal scaledNumber(BigDecimal aNumber, RoundingMode aMode) {
Threshold threshold = Threshold.thresholdFor(aNumber);
BigDecimal adjustedNumber = aNumber.movePointLeft(threshold.getNumberOfZeroes());
BigDecimal scaledNumber = toPrecisionWithoutLoss(adjustedNumber, REQUIRED_PRECISION,
aMode).stripTrailingZeros();
// System.out.println("Number: <" + aNumber + ">, adjusted: <" + adjustedNumber
// + ">, rounded: <" + scaledNumber + ">");
return scaledNumber;
}
public static String shortenedNumber(long aNumber, RoundingMode aMode) {
boolean isNegative = aNumber < 0;
BigDecimal numberAsBigDecimal = new BigDecimal(isNegative ? -aNumber : aNumber);
Threshold threshold = Threshold.thresholdFor(numberAsBigDecimal);
BigDecimal scaledNumber = aNumber == 0 ? numberAsBigDecimal : scaledNumber(
numberAsBigDecimal, aMode);
if (scaledNumber.compareTo(new BigDecimal("1000")) >= 0) {
scaledNumber = scaledNumber(scaledNumber, aMode);
threshold = threshold.getHigherThreshold();
}
String sign = isNegative ? "-" : "";
String printNumber = sign + scaledNumber.stripTrailingZeros().toPlainString()
+ threshold.getSuffix();
// System.out.println("Number: <" + sign + numberAsBigDecimal + ">, rounded: <"
// + sign + scaledNumber + ">, print: <" + printNumber + ">");
return printNumber;
}
}
(Uncomment the println
statements or change to use your favourite logger to see what it's doing.)
And finally, the tests in NumberShortenerTest (plain JUnit 4):
import static org.junit.Assert.*;
import java.math.BigDecimal;
import java.math.RoundingMode;
import org.junit.Test;
public class NumberShortenerTest {
private static final long[] NUMBERS_FROM_OP = new long[] { 1000, 5821, 10500, 101800, 2000000, 7800000, 92150000, 123200000 };
private static final String[] EXPECTED_FROM_OP = new String[] { "1k", "5.8k", "10k", "101k", "2m", "7.8m", "92m", "123m" };
private static final String[] EXPECTED_FROM_OP_HALF_UP = new String[] { "1k", "5.8k", "11k", "102k", "2m", "7.8m", "92m", "123m" };
private static final long[] NUMBERS_TO_TEST = new long[] { 1, 500, 999, 1000, 1001, 1009, 1049, 1050, 1099, 1100, 12345, 123456, 999999, 1000000,
1000099, 1000999, 1009999, 1099999, 1100000, 1234567, 999999999, 1000000000, 9123456789L, 123456789123L };
private static final String[] EXPECTED_FROM_TEST = new String[] { "1", "500", "999", "1k", "1k", "1k", "1k", "1k", "1k", "1.1k", "12k", "123k",
"999k", "1m", "1m", "1m", "1m", "1m", "1.1m", "1.2m", "999m", "1b", "9.1b", "123b" };
private static final String[] EXPECTED_FROM_TEST_HALF_UP = new String[] { "1", "500", "999", "1k", "1k", "1k", "1k", "1.1k", "1.1k", "1.1k", "12k",
"123k", "1m", "1m", "1m", "1m", "1m", "1.1m", "1.1m", "1.2m", "1b", "1b", "9.1b", "123b" };
@Test
public void testThresholdFor() {
assertEquals(Threshold.ZERO, Threshold.thresholdFor(1));
assertEquals(Threshold.ZERO, Threshold.thresholdFor(999));
assertEquals(Threshold.THOUSAND, Threshold.thresholdFor(1000));
assertEquals(Threshold.THOUSAND, Threshold.thresholdFor(1234));
assertEquals(Threshold.THOUSAND, Threshold.thresholdFor(9999));
assertEquals(Threshold.THOUSAND, Threshold.thresholdFor(999999));
assertEquals(Threshold.MILLION, Threshold.thresholdFor(1000000));
}
@Test
public void testToPrecision() {
RoundingMode mode = RoundingMode.DOWN;
assertEquals(new BigDecimal("1"), NumberShortener.toPrecisionWithoutLoss(new BigDecimal("1.23456"), 1, mode));
assertEquals(new BigDecimal("1.2"), NumberShortener.toPrecisionWithoutLoss(new BigDecimal("1.23456"), 2, mode));
assertEquals(new BigDecimal("1.23"), NumberShortener.toPrecisionWithoutLoss(new BigDecimal("1.23456"), 3, mode));
assertEquals(new BigDecimal("1.234"), NumberShortener.toPrecisionWithoutLoss(new BigDecimal("1.23456"), 4, mode));
assertEquals(new BigDecimal("999").toPlainString(), NumberShortener.toPrecisionWithoutLoss(new BigDecimal("999"), 4, mode).stripTrailingZeros()
.toPlainString());
assertEquals(new BigDecimal("999").toPlainString(), NumberShortener.toPrecisionWithoutLoss(new BigDecimal("999"), 2, mode).stripTrailingZeros()
.toPlainString());
assertEquals(new BigDecimal("999").toPlainString(), NumberShortener.toPrecisionWithoutLoss(new BigDecimal("999.9"), 2, mode).stripTrailingZeros()
.toPlainString());
mode = RoundingMode.HALF_UP;
assertEquals(new BigDecimal("1"), NumberShortener.toPrecisionWithoutLoss(new BigDecimal("1.23456"), 1, mode));
assertEquals(new BigDecimal("1.2"), NumberShortener.toPrecisionWithoutLoss(new BigDecimal("1.23456"), 2, mode));
assertEquals(new BigDecimal("1.23"), NumberShortener.toPrecisionWithoutLoss(new BigDecimal("1.23456"), 3, mode));
assertEquals(new BigDecimal("1.235"), NumberShortener.toPrecisionWithoutLoss(new BigDecimal("1.23456"), 4, mode));
assertEquals(new BigDecimal("999").toPlainString(), NumberShortener.toPrecisionWithoutLoss(new BigDecimal("999"), 4, mode).stripTrailingZeros()
.toPlainString());
assertEquals(new BigDecimal("999").toPlainString(), NumberShortener.toPrecisionWithoutLoss(new BigDecimal("999"), 2, mode).stripTrailingZeros()
.toPlainString());
assertEquals(new BigDecimal("1000").toPlainString(), NumberShortener.toPrecisionWithoutLoss(new BigDecimal("999.9"), 2, mode)
.stripTrailingZeros().toPlainString());
}
@Test
public void testNumbersFromOP() {
for (int i = 0; i < NUMBERS_FROM_OP.length; i++) {
assertEquals("Index " + i + ": " + NUMBERS_FROM_OP[i], EXPECTED_FROM_OP[i],
NumberShortener.shortenedNumber(NUMBERS_FROM_OP[i], RoundingMode.DOWN));
assertEquals("Index " + i + ": " + NUMBERS_FROM_OP[i], EXPECTED_FROM_OP_HALF_UP[i],
NumberShortener.shortenedNumber(NUMBERS_FROM_OP[i], RoundingMode.HALF_UP));
}
}
@Test
public void testBorders() {
assertEquals("Zero: " + 0, "0", NumberShortener.shortenedNumber(0, RoundingMode.DOWN));
assertEquals("Zero: " + 0, "0", NumberShortener.shortenedNumber(0, RoundingMode.HALF_UP));
for (int i = 0; i < NUMBERS_TO_TEST.length; i++) {
assertEquals("Index " + i + ": " + NUMBERS_TO_TEST[i], EXPECTED_FROM_TEST[i],
NumberShortener.shortenedNumber(NUMBERS_TO_TEST[i], RoundingMode.DOWN));
assertEquals("Index " + i + ": " + NUMBERS_TO_TEST[i], EXPECTED_FROM_TEST_HALF_UP[i],
NumberShortener.shortenedNumber(NUMBERS_TO_TEST[i], RoundingMode.HALF_UP));
}
}
@Test
public void testNegativeBorders() {
for (int i = 0; i < NUMBERS_TO_TEST.length; i++) {
assertEquals("Index " + i + ": -" + NUMBERS_TO_TEST[i], "-" + EXPECTED_FROM_TEST[i],
NumberShortener.shortenedNumber(-NUMBERS_TO_TEST[i], RoundingMode.DOWN));
assertEquals("Index " + i + ": -" + NUMBERS_TO_TEST[i], "-" + EXPECTED_FROM_TEST_HALF_UP[i],
NumberShortener.shortenedNumber(-NUMBERS_TO_TEST[i], RoundingMode.HALF_UP));
}
}
}
Feel free to point out in the comments if I missed a significant test case or if expected values should be adjusted.
Upvotes: 4
Reputation: 8858
Important: Answers casting to double
will fail for numbers like 99999999999999999L
and return 100P
instead of 99P
because double
uses the IEEE
standard:
If a decimal string with at most 15 significant digits is converted to IEEE 754 double precision representation and then converted back to a string with the same number of significant digits, then the final string should match the original. [
long
has up to 19 significant digits.]
System.out.println((long)(double)99999999999999992L); // 100000000000000000
System.out.println((long)(double)99999999999999991L); // 99999999999999984
// it is even worse for the logarithm:
System.out.println(Math.log10(99999999999999600L)); // 17.0
System.out.println(Math.log10(99999999999999500L)); // 16.999999999999996
This solution cuts off unwanted digits and works for all long
values. Simple but performant implementation (comparison below). -120k can't be expressed with 4 characters, even -0.1M is too long, that's why for negative numbers 5 characters have to be okay:
private static final char[] magnitudes = {'k', 'M', 'G', 'T', 'P', 'E'}; // enough for long
public static final String convert(long number) {
String ret;
if (number >= 0) {
ret = "";
} else if (number <= -9200000000000000000L) {
return "-9.2E";
} else {
ret = "-";
number = -number;
}
if (number < 1000)
return ret + number;
for (int i = 0; ; i++) {
if (number < 10000 && number % 1000 >= 100)
return ret + (number / 1000) + '.' + ((number % 1000) / 100) + magnitudes[i];
number /= 1000;
if (number < 1000)
return ret + number + magnitudes[i];
}
}
The test in the else if
at the beginning is necessairy because the min is -(2^63)
and the max is (2^63)-1
and therefore the assignment number = -number
would fail if number == Long.MIN_VALUE
. If we have to do a check, then we can as well include as many numbers as possible instead of just checking for number == Long.MIN_VALUE
.
The comparison of this implementation with the one who got the most upvotes (said to be the fastest currently) showed that it is more than 5 times faster (it depends on the test settings, but with more numbers the gain gets bigger and this implementation has to do more checks because it handles all cases, so if the other one would be fixed the difference would become even bigger). It is that fast because there are no floating point operations, no logarithm, no power, no recursion, no regex, no sophisticated formatters and minimization of the amount of objects created.
Here is the test program:
public class Test {
public static void main(String[] args) {
long[] numbers = new long[20000000];
for (int i = 0; i < numbers.length; i++)
numbers[i] = Math.random() < 0.5 ? (long) (Math.random() * Long.MAX_VALUE) : (long) (Math.random() * Long.MIN_VALUE);
System.out.println(convert1(numbers) + " vs. " + convert2(numbers));
}
private static long convert1(long[] numbers) {
long l = System.currentTimeMillis();
for (int i = 0; i < numbers.length; i++)
Converter1.convert(numbers[i]);
return System.currentTimeMillis() - l;
}
private static long convert2(long[] numbers) {
long l = System.currentTimeMillis();
for (int i = 0; i < numbers.length; i++)
Converter2.coolFormat(numbers[i], 0);
return System.currentTimeMillis() - l;
}
}
Possible output: 2309 vs. 11591
(about the same when only using positive numbers and much more extreme when reversing the order of execution, maybe it has something to do with garbage collection)
Upvotes: 8
Reputation: 9624
My favorite. You could use "k" and so on as indicator for decimal too, as common in the electronic domain. This will give you an extra digit without additional space
Second column tries to use as much digits as possible
1000 => 1.0k | 1000
5821 => 5.8k | 5821
10500 => 10k | 10k5
101800 => 101k | 101k
2000000 => 2.0m | 2m
7800000 => 7.8m | 7m8
92150000 => 92m | 92m1
123200000 => 123m | 123m
9999999 => 9.9m | 9m99
This is the code
public class HTTest {
private static String[] unit = {"u", "k", "m", "g", "t"};
/**
* @param args
*/
public static void main(String[] args) {
int[] numbers = new int[]{1000, 5821, 10500, 101800, 2000000, 7800000, 92150000, 123200000, 9999999};
for(int n : numbers) {
System.out.println(n + " => " + myFormat(n) + " | " + myFormat2(n));
}
}
private static String myFormat(int pN) {
String str = Integer.toString(pN);
int len = str.length ()-1;
if (len <= 3) return str;
int level = len / 3;
int mode = len % 3;
switch (mode) {
case 0: return str.substring(0, 1) + "." + str.substring(1, 2) + unit[level];
case 1: return str.substring(0, 2) + unit[level];
case 2: return str.substring(0, 3) + unit[level];
}
return "how that?";
}
private static String trim1 (String pVal) {
if (pVal.equals("0")) return "";
return pVal;
}
private static String trim2 (String pVal) {
if (pVal.equals("00")) return "";
return pVal.substring(0, 1) + trim1(pVal.substring(1,2));
}
private static String myFormat2(int pN) {
String str = Integer.toString(pN);
int len = str.length () - 1;
if (len <= 3) return str;
int level = len / 3;
int mode = len % 3;
switch (mode) {
case 0: return str.substring(0, 1) + unit[level] + trim2(str.substring(1, 3));
case 2: return str.substring(0, 3) + unit[level];
case 1: return str.substring(0, 2) + unit[level] + trim1(str.substring(2, 3));
}
return "how that?";
}
}
Upvotes: 5
Reputation: 668
Adding my own answer, Java code, self explanatory code..
import java.math.BigDecimal;
/**
* Method to convert number to formatted number.
*
* @author Gautham PJ
*/
public class ShortFormatNumbers
{
/**
* Main method. Execution starts here.
*/
public static void main(String[] args)
{
// The numbers that are being converted.
int[] numbers = {999, 1400, 2500, 45673463, 983456, 234234567};
// Call the "formatNumber" method on individual numbers to format
// the number.
for(int number : numbers)
{
System.out.println(number + ": " + formatNumber(number));
}
}
/**
* Format the number to display it in short format.
*
* The number is divided by 1000 to find which denomination to be added
* to the number. Dividing the number will give the smallest possible
* value with the denomination.
*
* @param the number that needs to be converted to short hand notation.
* @return the converted short hand notation for the number.
*/
private static String formatNumber(double number)
{
String[] denominations = {"", "k", "m", "b", "t"};
int denominationIndex = 0;
// If number is greater than 1000, divide the number by 1000 and
// increment the index for the denomination.
while(number > 1000.0)
{
denominationIndex++;
number = number / 1000.0;
}
// To round it to 2 digits.
BigDecimal bigDecimal = new BigDecimal(number);
bigDecimal = bigDecimal.setScale(2, BigDecimal.ROUND_HALF_EVEN);
// Add the number with the denomination to get the final value.
String formattedNumber = bigDecimal + denominations[denominationIndex];
return formattedNumber;
}
}
Upvotes: 2
Reputation: 187397
This solution (an extension of this answer) addresses the above issues.
import org.apache.commons.lang.math.NumberUtils;
import java.text.DecimalFormat;
import java.text.FieldPosition;
import java.text.Format;
import java.text.ParsePosition;
import java.util.regex.Pattern;
/**
* Converts a number to a string in <a href="http://en.wikipedia.org/wiki/Metric_prefix">metric prefix</a> format.
* For example, 7800000 will be formatted as '7.8M'. Numbers under 1000 will be unchanged. Refer to the tests for further examples.
*/
class RoundedMetricPrefixFormat extends Format {
private static final String[] METRIC_PREFIXES = new String[]{"", "k", "M", "G", "T"};
/**
* The maximum number of characters in the output, excluding the negative sign
*/
private static final Integer MAX_LENGTH = 4;
private static final Pattern TRAILING_DECIMAL_POINT = Pattern.compile("[0-9]+\\.[kMGT]");
private static final Pattern METRIC_PREFIXED_NUMBER = Pattern.compile("\\-?[0-9]+(\\.[0-9])?[kMGT]");
@Override
public StringBuffer format(Object obj, StringBuffer output, FieldPosition pos) {
Double number = Double.valueOf(obj.toString());
// if the number is negative, convert it to a positive number and add the minus sign to the output at the end
boolean isNegative = number < 0;
number = Math.abs(number);
String result = new DecimalFormat("##0E0").format(number);
Integer index = Character.getNumericValue(result.charAt(result.length() - 1)) / 3;
result = result.replaceAll("E[0-9]", METRIC_PREFIXES[index]);
while (result.length() > MAX_LENGTH || TRAILING_DECIMAL_POINT.matcher(result).matches()) {
int length = result.length();
result = result.substring(0, length - 2) + result.substring(length - 1);
}
return output.append(isNegative ? "-" + result : result);
}
/**
* Convert a String produced by <tt>format()</tt> back to a number. This will generally not restore
* the original number because <tt>format()</tt> is a lossy operation, e.g.
*
* <pre>
* {@code
* def formatter = new RoundedMetricPrefixFormat()
* Long number = 5821L
* String formattedNumber = formatter.format(number)
* assert formattedNumber == '5.8k'
*
* Long parsedNumber = formatter.parseObject(formattedNumber)
* assert parsedNumber == 5800
* assert parsedNumber != number
* }
* </pre>
*
* @param source a number that may have a metric prefix
* @param pos if parsing succeeds, this should be updated to the index after the last parsed character
* @return a Number if the the string is a number without a metric prefix, or a Long if it has a metric prefix
*/
@Override
public Object parseObject(String source, ParsePosition pos) {
if (NumberUtils.isNumber(source)) {
// if the value is a number (without a prefix) don't return it as a Long or we'll lose any decimals
pos.setIndex(source.length());
return toNumber(source);
} else if (METRIC_PREFIXED_NUMBER.matcher(source).matches()) {
boolean isNegative = source.charAt(0) == '-';
int length = source.length();
String number = isNegative ? source.substring(1, length - 1) : source.substring(0, length - 1);
String metricPrefix = Character.toString(source.charAt(length - 1));
Number absoluteNumber = toNumber(number);
int index = 0;
for (; index < METRIC_PREFIXES.length; index++) {
if (METRIC_PREFIXES[index].equals(metricPrefix)) {
break;
}
}
Integer exponent = 3 * index;
Double factor = Math.pow(10, exponent);
factor *= isNegative ? -1 : 1;
pos.setIndex(source.length());
Float result = absoluteNumber.floatValue() * factor.longValue();
return result.longValue();
}
return null;
}
private static Number toNumber(String number) {
return NumberUtils.createNumber(number);
}
}
The solution was originally written in Groovy as shown below.
import org.apache.commons.lang.math.NumberUtils
import java.text.DecimalFormat
import java.text.FieldPosition
import java.text.Format
import java.text.ParsePosition
import java.util.regex.Pattern
/**
* Converts a number to a string in <a href="http://en.wikipedia.org/wiki/Metric_prefix">metric prefix</a> format.
* For example, 7800000 will be formatted as '7.8M'. Numbers under 1000 will be unchanged. Refer to the tests for further examples.
*/
class RoundedMetricPrefixFormat extends Format {
private static final METRIC_PREFIXES = ["", "k", "M", "G", "T"]
/**
* The maximum number of characters in the output, excluding the negative sign
*/
private static final Integer MAX_LENGTH = 4
private static final Pattern TRAILING_DECIMAL_POINT = ~/[0-9]+\.[kMGT]/
private static final Pattern METRIC_PREFIXED_NUMBER = ~/\-?[0-9]+(\.[0-9])?[kMGT]/
@Override
StringBuffer format(Object obj, StringBuffer output, FieldPosition pos) {
Double number = obj as Double
// if the number is negative, convert it to a positive number and add the minus sign to the output at the end
boolean isNegative = number < 0
number = Math.abs(number)
String result = new DecimalFormat("##0E0").format(number)
Integer index = Character.getNumericValue(result.charAt(result.size() - 1)) / 3
result = result.replaceAll("E[0-9]", METRIC_PREFIXES[index])
while (result.size() > MAX_LENGTH || TRAILING_DECIMAL_POINT.matcher(result).matches()) {
int length = result.size()
result = result.substring(0, length - 2) + result.substring(length - 1)
}
output << (isNegative ? "-$result" : result)
}
/**
* Convert a String produced by <tt>format()</tt> back to a number. This will generally not restore
* the original number because <tt>format()</tt> is a lossy operation, e.g.
*
* <pre>
* {@code
* def formatter = new RoundedMetricPrefixFormat()
* Long number = 5821L
* String formattedNumber = formatter.format(number)
* assert formattedNumber == '5.8k'
*
* Long parsedNumber = formatter.parseObject(formattedNumber)
* assert parsedNumber == 5800
* assert parsedNumber != number
* }
* </pre>
*
* @param source a number that may have a metric prefix
* @param pos if parsing succeeds, this should be updated to the index after the last parsed character
* @return a Number if the the string is a number without a metric prefix, or a Long if it has a metric prefix
*/
@Override
Object parseObject(String source, ParsePosition pos) {
if (source.isNumber()) {
// if the value is a number (without a prefix) don't return it as a Long or we'll lose any decimals
pos.index = source.size()
toNumber(source)
} else if (METRIC_PREFIXED_NUMBER.matcher(source).matches()) {
boolean isNegative = source[0] == '-'
String number = isNegative ? source[1..-2] : source[0..-2]
String metricPrefix = source[-1]
Number absoluteNumber = toNumber(number)
Integer exponent = 3 * METRIC_PREFIXES.indexOf(metricPrefix)
Long factor = 10 ** exponent
factor *= isNegative ? -1 : 1
pos.index = source.size()
(absoluteNumber * factor) as Long
}
}
private static Number toNumber(String number) {
NumberUtils.createNumber(number)
}
}
The tests are written in Groovy but can be used to verify either either the Java or Groovy class (because they both have the same name and API).
import java.text.Format
import java.text.ParseException
class RoundedMetricPrefixFormatTests extends GroovyTestCase {
private Format roundedMetricPrefixFormat = new RoundedMetricPrefixFormat()
void testNumberFormatting() {
[
7L : '7',
12L : '12',
856L : '856',
1000L : '1k',
(-1000L) : '-1k',
5821L : '5.8k',
10500L : '10k',
101800L : '102k',
2000000L : '2M',
7800000L : '7.8M',
(-7800000L): '-7.8M',
92150000L : '92M',
123200000L : '123M',
9999999L : '10M',
(-9999999L): '-10M'
].each { Long rawValue, String expectedRoundValue ->
assertEquals expectedRoundValue, roundedMetricPrefixFormat.format(rawValue)
}
}
void testStringParsingSuccess() {
[
'7' : 7,
'8.2' : 8.2F,
'856' : 856,
'-856' : -856,
'1k' : 1000,
'5.8k' : 5800,
'-5.8k': -5800,
'10k' : 10000,
'102k' : 102000,
'2M' : 2000000,
'7.8M' : 7800000L,
'92M' : 92000000L,
'-92M' : -92000000L,
'123M' : 123000000L,
'10M' : 10000000L
].each { String metricPrefixNumber, Number expectedValue ->
def parsedNumber = roundedMetricPrefixFormat.parseObject(metricPrefixNumber)
assertEquals expectedValue, parsedNumber
}
}
void testStringParsingFail() {
shouldFail(ParseException) {
roundedMetricPrefixFormat.parseObject('notNumber')
}
}
}
Upvotes: 16
Reputation: 79
I don't know if it's the best approach but, this is what i did.
7=>7
12=>12
856=>856
1000=>1.0k
5821=>5.82k
10500=>10.5k
101800=>101.8k
2000000=>2.0m
7800000=>7.8m
92150000=>92.15m
123200000=>123.2m
9999999=>10.0m
--- Code---
public String Format(Integer number){
String[] suffix = new String[]{"k","m","b","t"};
int size = (number.intValue() != 0) ? (int) Math.log10(number) : 0;
if (size >= 3){
while (size % 3 != 0) {
size = size - 1;
}
}
double notation = Math.pow(10, size);
String result = (size >= 3) ? + (Math.round((number / notation) * 100) / 100.0d)+suffix[(size/3) - 1] : + number + "";
return result
}
Upvotes: 7
Reputation: 23639
Here a solution that makes use of DecimalFormat's engineering notation:
public static void main(String args[]) {
long[] numbers = new long[]{7, 12, 856, 1000, 5821, 10500, 101800, 2000000, 7800000, 92150000, 123200000, 9999999};
for(long number : numbers) {
System.out.println(number + " = " + format(number));
}
}
private static String[] suffix = new String[]{"","k", "m", "b", "t"};
private static int MAX_LENGTH = 4;
private static String format(double number) {
String r = new DecimalFormat("##0E0").format(number);
r = r.replaceAll("E[0-9]", suffix[Character.getNumericValue(r.charAt(r.length() - 1)) / 3]);
while(r.length() > MAX_LENGTH || r.matches("[0-9]+\\.[a-z]")){
r = r.substring(0, r.length()-2) + r.substring(r.length() - 1);
}
return r;
}
Output:
7 = 7
12 = 12
856 = 856
1000 = 1k
5821 = 5.8k
10500 = 10k
101800 = 102k
2000000 = 2m
7800000 = 7.8m
92150000 = 92m
123200000 = 123m
9999999 = 10m
Upvotes: 44
Reputation: 19
//code longer but work sure...
public static String formatK(int number) {
if (number < 999) {
return String.valueOf(number);
}
if (number < 9999) {
String strNumber = String.valueOf(number);
String str1 = strNumber.substring(0, 1);
String str2 = strNumber.substring(1, 2);
if (str2.equals("0")) {
return str1 + "k";
} else {
return str1 + "." + str2 + "k";
}
}
if (number < 99999) {
String strNumber = String.valueOf(number);
String str1 = strNumber.substring(0, 2);
return str1 + "k";
}
if (number < 999999) {
String strNumber = String.valueOf(number);
String str1 = strNumber.substring(0, 3);
return str1 + "k";
}
if (number < 9999999) {
String strNumber = String.valueOf(number);
String str1 = strNumber.substring(0, 1);
String str2 = strNumber.substring(1, 2);
if (str2.equals("0")) {
return str1 + "m";
} else {
return str1 + "." + str2 + "m";
}
}
if (number < 99999999) {
String strNumber = String.valueOf(number);
String str1 = strNumber.substring(0, 2);
return str1 + "m";
}
if (number < 999999999) {
String strNumber = String.valueOf(number);
String str1 = strNumber.substring(0, 3);
return str1 + "m";
}
NumberFormat formatterHasDigi = new DecimalFormat("###,###,###");
return formatterHasDigi.format(number);
}
Upvotes: 1
Reputation: 54584
The ICU lib has a rule based formatter for numbers, which can be used for number spellout etc. I think using ICU would give you a readable and maintanable solution.
[Usage]
The right class is RuleBasedNumberFormat. The format itself can be stored as separate file (or as String constant, IIRC).
Example from http://userguide.icu-project.org/formatparse/numbers
double num = 2718.28;
NumberFormat formatter =
new RuleBasedNumberFormat(RuleBasedNumberFormat.SPELLOUT);
String result = formatter.format(num);
System.out.println(result);
The same page shows Roman numerals, so I guess your case should be possible, too.
Upvotes: 14
Reputation:
My Java is rusty, but here's how I'd implement it in C#:
private string FormatNumber(double value)
{
string[] suffixes = new string[] {" k", " m", " b", " t", " q"};
for (int j = suffixes.Length; j > 0; j--)
{
double unit = Math.Pow(1000, j);
if (value >= unit)
return (value / unit).ToString("#,##0.0") + suffixes[--j];
}
return value.ToString("#,##0");
}
It'd be easy to adjust this to use CS kilos (1,024) rather than metric kilos, or to add more units. It formats 1,000 as "1.0 k" rather than "1 k", but I trust that's immaterial.
To meet the more specific requirement "no more than four characters", remove the spaces before the suffixes and adjust the middle block like this:
if (value >= unit)
{
value /= unit;
return (value).ToString(value >= unit * 9.95 ? "#,##0" : "#,##0.0") + suffixes[--j];
}
Upvotes: 5
Reputation: 19820
I know, this looks more like a C program, but it's super lightweight!
public static void main(String args[]) {
long[] numbers = new long[]{1000, 5821, 10500, 101800, 2000000, 7800000, 92150000, 123200000, 9999999};
for(long n : numbers) {
System.out.println(n + " => " + coolFormat(n, 0));
}
}
private static char[] c = new char[]{'k', 'm', 'b', 't'};
/**
* Recursive implementation, invokes itself for each factor of a thousand, increasing the class on each invokation.
* @param n the number to format
* @param iteration in fact this is the class from the array c
* @return a String representing the number n formatted in a cool looking way.
*/
private static String coolFormat(double n, int iteration) {
double d = ((long) n / 100) / 10.0;
boolean isRound = (d * 10) %10 == 0;//true if the decimal part is equal to 0 (then it's trimmed anyway)
return (d < 1000? //this determines the class, i.e. 'k', 'm' etc
((d > 99.9 || isRound || (!isRound && d > 9.99)? //this decides whether to trim the decimals
(int) d * 10 / 10 : d + "" // (int) d * 10 / 10 drops the decimal
) + "" + c[iteration])
: coolFormat(d, iteration+1));
}
It outputs:
1000 => 1k
5821 => 5.8k
10500 => 10k
101800 => 101k
2000000 => 2m
7800000 => 7.8m
92150000 => 92m
123200000 => 123m
9999999 => 9.9m
Upvotes: 107
Reputation: 8747
Need some improvement, but: StrictMath to the rescue!
You can put the suffix in a String or array and fetch'em based on power, or something like that.
The division can also be managed around the power, i think almost everything is about the power value.
Hope it helps!
public static String formatValue(double value) {
int power;
String suffix = " kmbt";
String formattedNumber = "";
NumberFormat formatter = new DecimalFormat("#,###.#");
power = (int)StrictMath.log10(value);
value = value/(Math.pow(10,(power/3)*3));
formattedNumber=formatter.format(value);
formattedNumber = formattedNumber + suffix.charAt(power/3);
return formattedNumber.length()>4 ? formattedNumber.replaceAll("\\.[0-9]+", "") : formattedNumber;
}
outputs:
999
1.2k
98k
911k
1.1m
11b
712b
34t
Upvotes: 23