Reputation: 1584
I know there are several ways to compare regression models. One way it to create models (from linear to multiple) and compare R2, Adjusted R2, etc:
Mod1: y=b0+b1
Mod2: y=b0+b1+b2
Mod3: y=b0+b1+b2+b3 (etc)
I´m aware that some packages could perform a stepwise regression, but I'm trying to analyze that with purrr. I could create several simple linear models (Thanks for this post here), and now I want to Know how can create regression models adding a specific IV to equation:
reproducible code
data(mtcars)
library(tidyverse)
library(purrr)
library(broom)
iv_vars <- c("cyl", "disp", "hp")
make_model <- function(nm) lm(mtcars[c("mpg", nm)])
fits <- Map(make_model, iv_vars)
glance_tidy <- function(x) c(unlist(glance(x)), unlist(tidy(x)[, -1]))
t(iv_vars %>% Map(f = make_model) %>% sapply(glance_tidy))
What I want:
Mod1: mpg ~cyl
Mod2: mpg ~cly + disp
Mod3: mpg ~ cly + disp + hp
Thanks much.
Upvotes: 5
Views: 1712
Reputation: 816
I would begin by creating a list tibble storing your formulae. Then map the model over the formula, and map glance over the models.
library(tidyverse)
library(broom)
mtcars %>% as_tibble()
formula <- c(mpg ~ cyl, mpg ~ cyl + disp)
output <-
tibble(formula) %>%
mutate(model = map(formula, ~lm(formula = .x, data = mtcars)),
glance = map(model, glance))
output$glance
output %>% unnest(glance)
Upvotes: 4
Reputation: 36076
You could cumulatively paste over your vector of id_vars
to get the combinations you want. I used the code in this answer to do this.
I use the plus sign as the separator between variables to get ready for the formula notation in lm
.
cumpaste = function(x, .sep = " ") {
Reduce(function(x1, x2) paste(x1, x2, sep = .sep), x, accumulate = TRUE)
}
( iv_vars_cum = cumpaste(iv_vars, " + ") )
[1] "cyl" "cyl + disp" "cyl + disp + hp"
Then switch the make_model
function to use a formula and a dataset. The explanatory variables, separated by the plus sign, get passed to the function after the tilde in the formula. Everything is pasted together, which lm
conveniently interprets as a formula.
make_model = function(nm) {
lm(paste0("mpg ~", nm), data = mtcars)
}
Which we can see works as desired, returning a model with both explanatory variables.
make_model("cyl + disp")
Call:
lm(formula = as.formula(paste0("mpg ~", nm)), data = mtcars)
Coefficients:
(Intercept) cyl disp
34.66099 -1.58728 -0.02058
You'll likely need to rethink how you want to combine the info together, as you will now how differing numbers of columns due to the increased number of coefficients.
A possible option is to add dplyr::bind_rows
to your glance_tidy
function and then use map_dfr
from purrr for the final output.
glance_tidy = function(x) {
dplyr::bind_rows( c( unlist(glance(x)), unlist(tidy(x)[, -1]) ) )
}
iv_vars_cum %>%
Map(f = make_model) %>%
map_dfr(glance_tidy, .id = "model")
# A tibble: 3 x 28
model r.squared adj.r.squared sigma statistic p.value df logLik AIC
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 cyl 0.7261800 0.7170527 3.205902 79.56103 6.112687e-10 2 -81.65321 169.3064
2 cyl + disp 0.7595658 0.7429841 3.055466 45.80755 1.057904e-09 3 -79.57282 167.1456
3 cyl + disp + hp 0.7678877 0.7430186 3.055261 30.87710 5.053802e-09 4 -79.00921 168.0184 ...
Upvotes: 3