Reputation: 4307
I have this dataframe
x = pd.DataFrame.from_dict({'cat1':['A', 'A', 'A', 'B', 'B', 'C', 'C', 'C'], 'cat2':['X', 'X', 'Y', 'Y', 'Y', 'Y', 'Z', 'Z']})
cat1 cat2
0 A X
1 A X
2 A Y
3 B Y
4 B Y
5 C Y
6 C Z
7 C Z
I want to group by cat1
, and then aggregate cat2
as sets of different values, such as
cat1 cat2
0 A (X, Y)
1 B (Y,)
2 C (Y, Z)
This is part of a bigger dataframe with more columns, each of which has its own aggregation function, so how do I pass this functionality to the aggregation dictionary?
Upvotes: 5
Views: 6360
Reputation: 3464
x.groupby('cat1')['cat2'].agg(lambda x: set(x))
Output
As for the simplification suggested in comments, it appears the following works at least with Python 3.6.5 and Pandas 0.23.0 (but not with Python 3.6.2 and Pandas 0.20.3) :
x.groupby('cat1')['cat2'].agg(set)
Upvotes: 2
Reputation: 862471
Use lambda function with set
or unique
, also convert output to tuple
s:
x = pd.DataFrame.from_dict({'cat1':['A', 'A', 'A', 'B', 'B', 'C', 'C', 'C'],
'cat2':['X', 'X', 'Y', 'Y', 'Y', 'Y', 'Z', 'Z'],
'col':range(8)})
print (x)
cat1 cat2 col
0 A X 0
1 A X 1
2 A Y 2
3 B Y 3
4 B Y 4
5 C Y 5
6 C Z 6
7 C Z 7
a = x.groupby('cat1').agg({'cat2': lambda x: tuple(set(x)), 'col':'sum'})
print (a)
cat2 col
cat1
A (Y, X) 3
B (Y,) 7
C (Y, Z) 18
Or:
a = x.groupby('cat1').agg({'cat2': lambda x: tuple(x.unique()), 'col':'sum'})
print (a)
cat2 col
cat1
A (X, Y) 3
B (Y,) 7
C (Y, Z) 18
EDIT:
f = lambda x: tuple(x.unique())
f.__name__ = 'my_name'
a = x.groupby('cat1')['cat2'].agg(['min', 'max', 'nunique', f])
print (a)
min max nunique my_name
cat1
A X Y 2 (X, Y)
B Y Y 1 (Y,)
C Y Z 2 (Y, Z)
If there is only one lambda
function or no problem with column name <lambda>
:
a = x.groupby('cat1')['cat2'].agg(['min', 'max', 'nunique', lambda x: tuple(x.unique())])
print (a)
min max nunique <lambda>
cat1
A X Y 2 (X, Y)
B Y Y 1 (Y,)
C Y Z 2 (Y, Z)
Upvotes: 7
Reputation: 323226
Or we can filter the dataframe before groupby
x.drop_duplicates().groupby('cat1').cat2.apply(tuple)
Out[777]:
cat1
A (X, Y)
B (Y,)
C (Y, Z)
Name: cat2, dtype: object
Upvotes: 2
Reputation: 1073
x.groupby('cat1')['cat2'].unique().reset_index()
# Returns
cat1 cat2
0 A [X, Y]
1 B [Y]
2 C [Y, Z]
This first groups the entire dataframe by 'cat1', selects only the series 'cat2', and reduces each group to the unique set of 'cat2' values. The result puts the 'cat1' values in the index, so reset_index() will pull those values back out as a column if you need it in that format.
Upvotes: 3
Reputation: 38415
Groupby and unique gives you unique values
x.groupby('cat1').cat2.unique()
A [X, Y]
B [Y]
C [Y, Z]
If you want to have the output in tuple, try
x.groupby('cat1').cat2.unique().apply(tuple)
A (X, Y)
B (Y,)
C (Y, Z)
Upvotes: 3