Reputation: 331
I am importing data from a .bin file to a numpy array using this code:
dt = np.dtype([('ShotNum', np.uint32), ('X', np.float32), ('Y', np.float32),\
('Z', np.float32),('inten', np.float32), ('refl', np.float32),\
('dopp', np.float32),('range', np.float32),('theta', np.float32),\
('phi', np.float32)])
data=np.fromfile('Data.bin',dtype=dt)
#Flatten Array and then recreate into array of desired dimension
flatdata=list(itertools.chain.from_iterable(data))
flatdata1=np.asarray(flatdata,dtype=float)
workdata=flatdata1.reshape(flatdata1.size//10,10)
it works, but it is slow. Specifically unpacking the tuple within the data structure in the line
flatdata=list(itertools.chain.from_iterable(data))
is super slow. Is there a way I can avoid creating this nested structure in the first place when importing data? and if not, is there a faster way to flatten?
Upvotes: 2
Views: 217
Reputation: 231510
Illustrating the use of chain
in flattening a structured array:
In [107]: data
Out[107]:
array([( 1., 2., 3., 1), ( 1., 2., 3., 1), ( 1., 2., 3., 1)],
dtype=[('a', '<f4'), ('b', '<f4'), ('c', '<f4'), ('d', '<i4')])
In [108]: import itertools
In [109]: list(itertools.chain.from_iterable(data))
Out[109]: [1.0, 2.0, 3.0, 1, 1.0, 2.0, 3.0, 1, 1.0, 2.0, 3.0, 1]
chain
is a well established method of flattening a nested list.
Turning a structured array into a 2d array is a bit tricky. view
and astype
work, sometimes, but the most reliable is another list approach:
In [110]: data.tolist()
Out[110]: [(1.0, 2.0, 3.0, 1), (1.0, 2.0, 3.0, 1), (1.0, 2.0, 3.0, 1)]
In [111]: np.array(data.tolist())
Out[111]:
array([[ 1., 2., 3., 1.],
[ 1., 2., 3., 1.],
[ 1., 2., 3., 1.]])
Making the equivalent array:
In [115]: np.fromiter(itertools.chain.from_iterable(data),float).reshape(3,-1)
Out[115]:
array([[ 1., 2., 3., 1.],
[ 1., 2., 3., 1.],
[ 1., 2., 3., 1.]])
tolist
is faster:
In [116]: timeit np.fromiter(itertools.chain.from_iterable(data),float).reshape
...: (3,-1)
22 µs ± 329 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
In [117]: timeit np.array(data.tolist())
5.8 µs ± 13.3 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
As suggested in a comment we can enumerate the fields, and make an array from that:
In [120]: [data[name] for name in data.dtype.names]
Out[120]:
[array([ 1., 1., 1.], dtype=float32),
array([ 2., 2., 2.], dtype=float32),
array([ 3., 3., 3.], dtype=float32),
array([1, 1, 1])]
In [124]: np.array([data[name] for name in data.dtype.names]).T
Out[124]:
array([[ 1., 2., 3., 1.],
[ 1., 2., 3., 1.],
[ 1., 2., 3., 1.]])
Similar time to the tolist
approach:
In [125]: timeit np.array([data[name] for name in data.dtype.names]).T
6.94 µs ± 14.5 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
Upvotes: 2