Reputation: 2474
The following code produces a vector of length 6 in the last column, from that column I would like to extract 6 new columns in my tibble.
require(tidyverse)
require(purrrlyr)
# this function will return a vector of the same length (6) for each group
fun=function(X,Y){
mycut<-cut(X,breaks=seq(50,350,by=50),right=FALSE)
v<-tapply(Y,mycut,sum)
return(v)
}
# use the previous function to count gears per class of hp
mtcars %>%
group_by(cyl) %>%
by_slice(~fun(.x$hp,.x$gear)) %>%
rename(cut=.out)
Here I have a vector in my column cut
# tibble [3 x 2]
cyl cut
<fctr> <list>
1 4 <dbl [6]>
2 6 <dbl [6]>
3 8 <dbl [6]>
What command do I need to pass from this vector to a table like?
cyl [50,100) [100,150) [150,200) [200,250) [250,300) [300,350)
4 36 9 NA NA NA NA
...
unnest
does not work. Do I have to work with by_row
or is there a more straightforward answer?
Upvotes: 1
Views: 635
Reputation: 2164
I would suggest another approach. Instead of using the deprecated by_slice()
function (that now recides in the purrrlyr package), you can use this code:
mtcars %>%
split(.$cyl) %>%
map(~fun(.x$hp,.x$gear)) %>%
do.call(rbind, .)
Which gives the following output
[50,100) [100,150) [150,200) [200,250) [250,300) [300,350)
4 36 9 NA NA NA NA
6 NA 22 5 NA NA NA
8 NA NA 21 15 5 5
Upvotes: 1
Reputation: 886938
We need to get the names
of the 'cut' variable as new column and then do a spread
to reshape to 'wide' format after unnest
ing the list
elements
mtcars %>%
group_by(cyl) %>%
by_slice(~fun(.x$hp,.x$gear)) %>%
rename(cut=.out) %>%
mutate(Names = map(cut, ~factor(names(.x), levels = names(.x)))) %>%
unnest %>%
spread(Names, cut)
# A tibble: 3 x 7
# cyl `[50,100)` `[100,150)` `[150,200)` `[200,250)` `[250,300)` `[300,350)`
#* <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 4 36 9 NA NA NA NA
#2 6 NA 22 5 NA NA NA
#3 8 NA NA 21 15 5 5
Upvotes: 1