Reputation: 263
I need to plot a histogram with the following dictionary
x = {5:289, 8:341, 1:1565, 4:655, 2:1337, 9:226, 7:399, 3:967, 6:405}
I need first keys be ordered from 1 to 9. Then the values will be plotted in the histogram, showing a maximum probability of 1.0. I have tried the following (plus other stuff).
import matplotlib.pyplot as plt
import numpy as np
plt.hist(x.keys(), x.values(), color='g', label = "Real distribution")
plt.show()
Or
plt.hist (x, bins = np.arange(9), color = 'g', label = "Real distribution")
plt.show()
Or
fsn_count_ = sorted(fsn_count)
plt.hist (fsn_count_, bins = np.arange(9), color = 'b', label = "Real distribution")
plt.plot ([0] + bf, color = 'g', label = "Benford Model")
plt.xlabel ('Significant number')
plt.ylabel ('Percentage')
plt.xlim (1,9)
plt.ylim (0,1)
plt.legend (bbox_to_anchor = (1, 1), loc="upper right", borderaxespad=0.)
plt.savefig (country_ + '.png')
plt.show ()
plt.clf ()
distribution_sum = sum(bf)
print('The sum of percentage distribution is:', distribution_sum)
Upvotes: 4
Views: 15671
Reputation: 25362
From your comment, it seems that a bar chart would be a better way to display the data.
The probability can be found by dividing the values of the dictionary by the sum of the values:
import matplotlib.pyplot as plt
import numpy as np
x = {5:289, 8:341, 1:1565, 4:655, 2:1337, 9:226, 7:399, 3:967, 6:405}
keys = x.keys()
vals = x.values()
plt.bar(keys, np.divide(list(vals), sum(vals)), label="Real distribution")
plt.ylim(0,1)
plt.ylabel ('Percentage')
plt.xlabel ('Significant number')
plt.xticks(list(keys))
plt.legend (bbox_to_anchor=(1, 1), loc="upper right", borderaxespad=0.)
plt.show()
Upvotes: 6
Reputation: 1341
I'm sorry in advance for how terribly un-pythonic and weird my code is. I'm not too strong with mathplot or with numpy.
If you used the_keys = list(set(dict.keys()))
to get a set of the keys (ordered, because it was a set. Like I said in comments, I'm doing some pretty ugly hacking here.) you can then do the_values = [x[i] for i in the_keys]
to get a list representation of the dictionary ordered by keys. Then plot it with
plt.hist(the_keys, the_values, color='g', label = "Real distribution")
plt.show()
Upvotes: -1
Reputation: 71451
Sort your data before plotting:
import matplotlib.pyplot as plt
import numpy as np
x = {5:289, 8:341, 1:1565, 4:655, 2:1337, 9:226, 7:399, 3:967, 6:405}
new_x = sorted(x.items(), key=lambda x:x[0])
plt.hist([i[-1] for i in new_x], normed=True, bins=len(new_x), color='g', label = "Real distribution")
plt.show()
Upvotes: 2