Reputation: 7730
I tried to solve linear system with constraints using linprog
from scipy.optimize
, but got answer contradicting some inequalities.
Here is my set up:
import numpy as np
from scipy.optimize import linprog
c = np.array([1,0,0,0,0,0,0])
A_ub = np.identity(7)*(-1)
b_ub = np.array([[-2],[-2],[-2],[-2],[-2],[-2],[-2]])
A_eq = np.array([[1,1,1,1,1,1,0],[0.3,1.3,0.9,0,0,0,-1],[0.3,0,0,0,0,0,-2/3],
[0,0.65,0,0,0,0,-1/15],[0,0,0.3,0,0,0,-1/15]])
b_eq = np.array([[100],[0],[0],[0],[0]])
res = linprog(c = c, A_ub=A_ub, b_ub=b_ub, A_eq = A_eq, b_eq = b_eq)
Here is the answer:
fun: -0.0
message: 'Optimization terminated successfully.'
nit: 15
slack: array([ -2., -2., -2., 94., 0., 0., -2.])
status: 0
success: True
x: array([ 0.00000000e+00, -8.88178420e-16, -1.77635684e-15,
9.60000000e+01, 2.00000000e+00, 2.00000000e+00,
-7.10542736e-15])
As you can see x_2 => 8.88178420e-16
is not smaller than -2.
Can somebody clarify why it happens?
Here is link to documentation: linprog
Upvotes: 1
Views: 1286
Reputation: 33532
In general, scipy's linprog (method='simplex'
) is somewhat broken and not maintained much anymore.
Negative slacks like:
slack: array([ -2., -2., -2., 94., 0., 0., -2.])
should never result in a valid solution!
While i saw some bad things in linprog (not finding an existing feasible solution), this looks very very bad (claiming an infeasible solution to be correct)!
So three things:
method='interior-point'
which is more robust and more advanced
-x <= -2 <-> x >= 2
x >= 2
!IPM on your code:
con: array([ 2.77992740e-10, -1.52664548e-11, 3.69659858e-12, -5.92570437e-12,
-2.37077025e-12])
fun: 43.3333333331385
message: 'Optimization terminated successfully.'
nit: 5
slack: array([4.13333333e+01, 6.92779167e-13, 2.33333333e+00, 1.47777778e+01,
1.47777778e+01, 1.47777778e+01, 1.75000000e+01])
status: 0
success: True
x: array([43.33333333, 2. , 4.33333333, 16.77777778, 16.77777778,
16.77777778, 19.5 ])
Upvotes: 1