Reputation: 105
I've written a tail-recursive predicate in Prolog which outputs the integers between A
and B
in a list K
. I've used "reverse" to bring the numbers into the right order:
numbers(A,B,K) :- numbers(A,B,[],K).
numbers(Y,Y,X,K) :- !, reverse([Y|X],K).
numbers(A,B,X,K) :- A<B, C is A+1, numbers(C,B,[A|X],K).
Query:
?- numbers(3,6, K).
K=[3,4,5,6]
All works fine. What I now want to do is that I only want to have odd numbers of the range between A
and B
in the list K
. How can I do that? Thanks in advance!
Upvotes: 1
Views: 683
Reputation: 5675
Another possibility is to use DCG :
numbers(A,B,K) :-
phrase(odd(A,B), K).
odd(A,B) --> {A > B, !}, [].
odd(A,B) --> {A mod2 =:= 0, !, C is A+1}, odd(C,B).
odd(A,B) --> {C is A+2}, [A], odd(C, B).
Upvotes: 1
Reputation: 58244
Firstly, I would try to avoid using reverse/2
. If you have such a solution, it's often an indicator that there's a better way to get the answer forwards more directly. Not always, but most often. reverse/2
is probably the 2nd favorite band-aid in Prolog right behind use of the cut. :)
In many problems, an auxiliary accumulator is needed. In this particular case, it is not. Also, I would tend to use CLP(FD) operations when involving integers since it's the more relational approach to reasoning over integers. But you can use the solution below with is/2
, etc, if you wish. It just won't be as general.
numbers(S, E, []) :- S #> E. % null case
numbers(X, X, [X]).
numbers(S, E, [S|T]) :-
S #< E,
S1 #= S + 1,
numbers(S1, E, T).
| ?- numbers(3, 8, L).
L = [3,4,5,6,7,8] ? ;
no
| ?- numbers(A, B, [2,3,4,5]).
A = 2
B = 5 ? ;
no
| ?-
This solution avoids reverse/2
and is tail recursive.
To update it for odd integers, the first thought is that we can easily modify the above to do every other number by just adding 2 instead of 1:
every_other_number(S, E, []) :- S #> E.
every_other_number(X, X, [X]).
every_other_number(S, E, [S|T]) :-
S #< E,
S1 #= S + 2,
every_other_number(S1, E, T).
| ?- every_other_number(3, 7, L).
L = [3,5,7] ? ;
no
| ?- every_other_number(3, 8, L).
L = [3,5,7] ? ;
no
| ?- every_other_number(4, 8, L).
L = [4,6,8] ? ;
no
| ?-
Then we can do odd numbers by creating an initial predicate to ensure the condition that the first value is odd and calling every_other_number/3
:
odd_numbers(S, E, L) :-
S rem 2 #= 1,
every_other_number(S, E, L).
odd_numbers(S, E, L) :-
S rem 2 #= 0,
S1 #= S + 1,
every_other_number(S1, E, L).
| ?- odd_numbers(2, 8, L).
L = [3,5,7] ? ;
no
| ?- odd_numbers(2, 9, L).
L = [3,5,7,9] ? ;
no
| ?- odd_numbers(3, 8, L).
L = [3,5,7] ? ;
no
| ?-
Upvotes: 3
Reputation: 2662
This could be a solution, using mod/2
operator.
numbers(A,B,K) :-
B1 is B+1,
numbers(A,B1,[],K).
numbers(Y,Y1,X,K) :-
Y = Y1,
reverse(X,K).
numbers(A,B,X,K) :-
A<B,
C is A+1,
C1 is mod(C,2),
(C1 = 0 ->
numbers(C,B,[A|X],K)
; numbers(C,B,X,K)).
Upvotes: 2