Reputation:
E.g. For the input 5, the output should be 7. (bin(1) = 1, bin(2) = 10 ... bin(5) = 101) --> 1 + 1 + 2 + 1 + 2 = 7
Here's what I've tried, but it isn't a very efficient algorithm, considering that I iterate the loop once for each integer. My code (Python 3):
i = int(input())
a = 0
for b in range(i+1):
a = a + bin(b).count("1")
print(a)
Thank you!
Upvotes: 1
Views: 476
Reputation: 21643
gmpy2, due to Alex Martella et al, seems to perform better, at least on my Win10 machine.
from time import time
import gmpy2
def onecount(n):
if n == 0:
return 0
if n % 2 == 0:
m = n/2
return onecount(m) + onecount(m-1) + m
m = (n-1)/2
return 2*onecount(m)+m+1
N = 10000
initial = time()
for _ in range(N):
for i in range(30):
onecount(i)
print (time()-initial)
initial = time()
for _ in range(N):
total = 0
for i in range(30):
total+=gmpy2.popcount(i)
print (time()-initial)
Here's the output:
1.7816979885101318
0.07404899597167969
If you want a list, and you're using >Py3.2:
>>> from itertools import accumulate
>>> result = list(accumulate([gmpy2.popcount(_) for _ in range(30)]))
>>> result
[0, 1, 2, 4, 5, 7, 9, 12, 13, 15, 17, 20, 22, 25, 28, 32, 33, 35, 37, 40, 42, 45, 48, 52, 54, 57, 60, 64, 67, 71]
Upvotes: 1
Reputation: 94192
Here's a solution based on the recurrence relation from OEIS:
def onecount(n):
if n == 0:
return 0
if n % 2 == 0:
m = n/2
return onecount(m) + onecount(m-1) + m
m = (n-1)/2
return 2*onecount(m)+m+1
>>> [onecount(i) for i in range(30)]
[0, 1, 2, 4, 5, 7, 9, 12, 13, 15, 17, 20, 22, 25, 28, 32, 33, 35, 37, 40, 42, 45, 48, 52, 54, 57, 60, 64, 67, 71]
Upvotes: 5