Reputation: 21
How can I be sure that data is successfully delivered to the other end in socket programming?
outStream.write()
doesn't guarantee that bytes are received on the other end. I can force server to send back some confirmation data, but how long should client wait for it? If I wait too short, maybe data is delivered to the server just when I throw timeout exception in client (which then shows error dialog, but server actually received data). On the other hand, I don't want to wait too much.
Should client wait some time and if confirmation is received, a third "commit" message is sent to server which then supplies data for further processing (so first client writes, then server replies and then client confirms). But then again, if the commit message is not received on server, client thinks that data is successfully sent but server will ignore it after some time, because it didn't receive commit message. And so on, bouncing never ends...
How is this situation generally handled?
Every tutorial that I read is just about creating/closing sockets, and sending data on client side and receiving it on server side.
If you have links to blogs which explain this problem (or even books), that would be good too.
[EDIT]
I should clarify some things. I'm using Java for client and server, and later I will create C# client. Everything is working perfectly for now. Both client and server are on the same LAN and I have never had any real problems. Scenario explained above is just theoretical, because I would like to cover as much as possible, including error handling.
I know TCP guarantees delivery, but in Java, out.write()
doesn't block until underlying TCP delivers or fails and then continues execution or throws an exception. It just continues execution and I don't know if sending failed or not. There is no callback function. I'm starting with socket programming so maybe there is very simple solution which I don't know about. All I need to do is to make sure client knows that server received the message (if that is even possible).
Upvotes: 1
Views: 1328
Reputation: 12347
If you have this kind of extreme need for reliability, you need to build that into your application and protocol. One way I have done that in the past is as follows.
Say you have a stream of "objects" (objects here defined in whatever way makes sense to your application) that need to be communicated from client C to server S. Associate a unique identifier with each object on the client side. Then have C send each object along with its identifier to S. But have C keep its copy of the object for now (in memory, or on disk, or whatever makes sense).
For each object S receives, it stores the object together with its unique identifier in its own local data store, and sends back an acknowledgment to C that it received the object (using the identifier to communicate that). C can now delete that object from its data store (strictly speaking it can delete all the ones it sent prior to that object as well -- since TCP guarantees sequenced delivery -- but that slightly complicates things).
This process can continue indefinitely and C never needs to explicitly wait for a confirmation for any one object. It simply maintains a local copy of each object. As long as the connection stays up, S will continually acknowledge every object it has received.
If the connection is broken for any reason, C assumes that S has not received any object it sent since the most recently received acknowledgment. When the connection is re-established, C may therefore resend a few objects that S previously received but since S stored the unique identifier along with each object, it simply acknowledges again that it received the object.
If S hangs for some reason, then eventually buffers between client and server will fill up and C's send
will block. The client may need to be prepared for this eventuality.
At the end of the stream of objects -- if there is an end -- C will need to wait for the last object to be acknowledged. There's simply no way around that, and so you will need to decide how long it's appropriate to wait before C gives up and declares an error.
(Of course, this is all essentially duplicating at the application layer what TCP is doing at the transport layer: acknowledging what was actually received with the ability for the sender to re-transmit anything that was lost.)
Upvotes: 2
Reputation: 457
TCP:
TCP guarantees packet delivery at layer 4 of the OSI Model. TCP is based on a handshake in which the receiving party must confirm the packet's delivery. In that case there is either something wrong in your code or your network is malfunctioning. If you are talking about the packet not making it to its destination, make sure you have properly bound the TCP server to the port, and that the destination is correct. While waiting for a packets arrival, make sure you have a receive timeout in place in order to prevent you application from getting hung on the receive.
Upvotes: 0